ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of a C-type short range antiferromagnetic order in expanded FeS

75   0   0.0 ( 0 )
 نشر من قبل Meng Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report neutron diffraction studies of FeS single crystals obtained from Rb$_x$Fe$_{2-y}$S$_2$ single crystals via a hydrothermal method. While no $sqrt {5}times sqrt {5}$ iron vacancy order or block antiferromagnetic order typical of Rb$_x$Fe$_{2-y}$S$_2$ is found in our samples, we observe $C$-type short range antiferromagnetic order with moments pointed along the $c$-axis hosted by a new phase of FeS with an expanded inter-layer spacing. The N{e}el temperature for this magnetic order is determined to be 165 K. Our finding of a variant FeS structure hosting this $C$-type antiferromagnetic order demonstrates that the known FeS phase synthesized in this method is in the vicinity of a magnetically ordered ground state, providing insights into understanding a variety of phenomena observed in FeS and the related FeSe$_{1-x}$S$_x$ iron chalcogenide system.



قيم البحث

اقرأ أيضاً

Fermi surface (FS) topology is a fundamental property of metals and superconductors. In electron-doped cuprate Nd2-xCexCuO4 (NCCO), an unexpected FS reconstruction has been observed in optimal- and over-doped regime (x=0.15-0.17) by quantum oscillati on measurements (QOM). This is all the more puzzling because neutron scattering suggests that the antiferromagnetic (AFM) long-range order, which is believed to reconstruct the FS, vanishes before x=0.14. To reconcile the conflict, a widely discussed external magnetic field-induced AFM long-range order in QOM explains the FS reconstruction as an extrinsic property. Here, we report angle-resolved photoemission (ARPES) evidence of FS reconstruction in optimal- and over-doped NCCO. The observed FSs are in quantitative agreement with QOM, suggesting an intrinsic FS reconstruction without field. This reconstructed FS, despite its importance as a basis to understand electron-doped cuprates, cannot be explained under the traditional scheme. Furthermore, the energy gap of the reconstruction decreases rapidly near x=0.17 like an order parameter, echoing the quantum critical doping in transport. The totality of the data points to a mysterious order between x=0.14 and 0.17, whose appearance favors the FS reconstruction and disappearance defines the quantum critical doping. A recent topological proposal provides an ansatz for its origin.
We present studies of the photoexcited quasiparticle dynamics in Tl$_{2}$Ba$_{2}$Ca$_{2}$Cu$_{3}$O$_{y}$ (Tl-2223) using femtosecond optical techniques. Deep into the superconducting state (below 40 K), a dramatic change occurs in the temporal dynami cs associated with photoexcited quasiparticles rejoining the condensate. This is suggestive of entry into a coexistence phase which, as our analysis reveals, opens a gap in the density of states (in addition to the superconducting gap), and furthermore, competes with superconductivity resulting in a depression of the superconducting gap.
The symmetry requirement and the origin of magnetic orders coexisting with superconductivity have been strongly debated issues of iron-based superconductors (FeSCs). Observation of C$_4$-symmetric antiferromagnetism in violation of the inter-band nes ting condition of spin-density waves in superconducting ground state will require significant change in our understanding of the mechanism of FeSC. The superconducting material Sr$_2$VO$_3$FeAs, a bulk version of monolayer FeSC in contact with a perovskite layer with its magnetism (T$_N$ ~ 50 K) and superconductivity (T$_c$ ~ 37 K) coexisting at parent state, has no reported structural orthorhombic distortion and thus makes a perfect system to look for theoretically expected C$_4$ magnetisms. Based on variable temperature spin-polarized scanning tunneling microscopy (SPSTM) with newly discovered imaging mechanism that removes the static surface reconstruction (SR) pattern by fluctuating it rapidly with spin-polarized tunneling current, we could visualize underlying C$_4$ symmetric (2$times$2) magnetic domains and its phase domain walls. We find that this magnetic order is perfectly consistent with the plaquette antiferromagnetic order in tetragonal Fe spin lattice expected from theories based on the Heisenberg exchange interaction of local Fe moments and the quantum order by disorder. The inconsistency of its modulation Q vectors from the nesting condition also implies that the nesting-based C$_2$ symmetric magnetism is not a unique prerequisite of high-T$_c$ FeSC. Furthermore, the plaquette antiferromagnetic domain wall dynamics under the influence of small spin torque effect of spin-polarized tunneling current are shown to be consistent with theoretical simulation based on the extended Landau-Lifshitz-Gilbert equation.
We investigate the antiferromagnetic (AF) order in the d-wave superconducting (SC) state at high magnetic fields. A two-dimensional model with on-site repulsion U, inter-site attractive interaction V and antiferromagnetic exchange interaction J is so lved using the mean field theory. For finite values of U and J, a first order transition occurs from the normal state to the FFLO state, while the FFLO-BCS phase transition is second order, consistent with the experimental results in CeCoIn_5. Although the BCS-FFLO transition is continuous, the Neel temperature of AF order is discontinuous at the phase boundary because the AF order in the FFLO state is induced by the Andreev bound state localized in the zeros of FFLO order parameter, while the AF order hardly occurs in the uniform BCS state. The spatial structure of the magnetic moment is investigated for the commensurate AF state as well as for the incommensurate AF state. The influence of the spin fluctuations is discussed for both states. Since the fluctuations are enhanced in the normal state for incommensurate AF order, this AF order can be confined in the FFLO state. The experimental results in CeCoIn_5 are discussed.
We use inelastic neutron scattering to study the crystalline electric field (CEF) excitations of Ce$^{3+}$ in CeFeAsO$_{1-x}$F$_{x}$($x=0,0.16$). For nonsuperconducting CeFeAsO, the Ce CEF levels have three magnetic doublets in the paramagnetic state , but these doublets split into six singlets when Fe ions order antiferromagnetically. For superconducting CeFeAsO$_{0.84}$F$_{0.16}$ ($T_c=41$ K), where the static AF order is suppressed, the Ce CEF levels have three magnetic doublets at $hbaromega=0,18.7,58.4$ meV at all temperatures. Careful measurements of the intrinsic linewidth $Gamma$ and the peak position of the 18.7 meV mode reveal clear anomaly at $T_c$, consistent with a strong enhancement of local magnetic susceptibility $chi^{primeprime}(hbaromega)$ below $T_c$. These results suggest that CEF excitations in the rare-earth oxypnictides can be used as a probe of spin dynamics in the nearby FeAs planes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا