ﻻ يوجد ملخص باللغة العربية
Types in logic programming have focused on conservative approximations of program semantics by regular types, on one hand, and on type systems based on a prescriptive semantics defined for typed programs, on the other. In this paper, we define a new semantics for logic programming, where programs evaluate to true, false, and to a new semantic value called wrong, corresponding to a run-time type error. We then have a type language with a separated semantics of types. Finally, we define a type system for logic programming and prove that it is semantically sound with respect to a semantic relation between programs and types where, if a program has a type, then its semantics is not wrong. Our work follows Milners approach for typed functional languages where the semantics of programs is independent from the semantic of types, and the type system is proved to be sound with respect to a relation between both semantics.
Besides respecting prescribed protocols, communication-centric systems should never get stuck. This requirement has been expressed by liveness properties such as progress or (dead)lock freedom. Several typing disciplines that ensure these properties
We present a weakest-precondition-style calculus for reasoning about the expected values (pre-expectations) of emph{mixed-sign unbounded} random variables after execution of a probabilistic program. The semantics of a while-loop is well-defined as th
We give an adequate denotational semantics for languages with recursive higher-order types, continuous probability distributions, and soft constraints. These are expressive languages for building Bayesian models of the kinds used in computational sta
The optimization phase of a compiler is responsible for transforming an intermediate representation (IR) of a program into a more efficient form. Modern optimizers, such as that used in the GraalVM compiler, use an IR consisting of a sophisticated gr
In this paper we provide two new semantics for proofs in the constructive modal logics CK and CD. The first semantics is given by extending the syntax of combinatorial proofs for propositional intuitionistic logic, in which proofs are factorised in a