ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating the external magnetic field in short-pulse intense laser-plasma interaction

120   0   0.0 ( 0 )
 نشر من قبل Ke Jiang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Imposing an external magnetic field in short-pulse intense laser-plasma interaction is of broad scientific interest in related plasma research areas. We propose a simple method using a virtual current layer by introducing an extra current density term to simulate the external magnetic field, and demonstrate it with three-dimensional particle-in-cell simulations. The field distribution and its evolution in sub-picosecond time scale are obtained. The magnetization process takes a much longer time than that of laser-plasma interaction due to plasma diamagnetism arising from collective response. The long-time evolution of magnetic diffusion and diamagnetic current can be predicted based on a simplified analytic model in combination with simulations.

قيم البحث

اقرأ أيضاً

While plasma often behaves diamagnetically, we demonstrate that the laser irradiation of a thin opaque target with an embedded target-transverse seed magnetic field $B_mathrm{seed}$ can trigger the generation of an order-of-magnitude stronger magneti c field with opposite sign at the target surface. Strong surface field generation occurs when the laser pulse is relativistically intense and results from the currents associated with the cyclotron rotation of laser-heated electrons transiting through the target and the compensating current of cold electrons. We derive a predictive scaling for this surface field generation, $B_mathrm{gen} sim - 2 pi B_mathrm{seed} Delta x/lambda_0$, where $Delta x$ is the target thickness and $lambda_0$ is the laser wavelength, and conduct 1D and 2D particle-in-cell simulations to confirm its applicability over a wide range of conditions. We additionally demonstrate that both the seed and surface-generated magnetic fields can have a strong impact on application-relevant plasma dynamics, for example substantially altering the overall expansion and ion acceleration from a $mu$m-thick laser-irradiated target with a kilotesla-level seed magnetic field.
323 - T. V. Liseykina , D. Bauer 2012
We study the ionization dynamics in intense laser-droplet interaction using three-dimensional, relativistic particle-in-cell simulations. Of particular interest is the laser intensity and frequency regime for which initially transparent, wavelength-s ized targets are not homogeneously ionized. Instead, the charge distribution changes both in space and in time on a sub-cycle scale. One may call this the extreme nonlinear Mie-optics regime. We find that - despite the fact that the plasma created at the droplet surface is overdense - oscillating electric fields may penetrate into the droplet under a certain angle, ionize, and propagate in the just generated plasma. This effect can be attributed to the local field enhancements at the droplet surface predicted by standard Mie theory. The penetration of the fields into the droplet leads to the formation of a highly inhomogeneous charge density distribution in the droplet interior, concentrated mostly in the polarization plane. We present a self-similar, exponential fit of the fractional ionization degree which depends only on a dimensionless combination of electric field amplitude, droplet radius, and plasma frequency with only a weak dependence on the laser frequency in the overdense regime.
A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially-resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally-incident time-delayed pr obe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is of the order of the pulsewidth, whereas a spatial resolution of a few microns is achieved by this optical technique. In addition, this technique does not suffer from refraction effects due to the steep plasma density gradients owing to the near-normal incidence of the probe pulse and consequently, higher harmonics of the probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The micron-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.
160 - Suo Tang , Naveen Kumar 2018
We develop an analytical model for ultraintense attosecond pulse emission in the highly relativistic laser-plasma interaction. In this model, the attosecond pulse is emitted by a strongly compressed electron layer around the instant when the layer tr ansverse current changes the sign and its longitudinal velocity approaches the maximum. The emitted attosecond pulse has a broadband exponential spectrum and a stabilized constant spectral phase $psi(omega)=pmpi/2-psi_{A_m}$. The waveform of the attosecond pulse is also given explicitly, to our knowledge, for the first time. We validate the analytical model via particle-in-cell (PIC) simulations for both normal and oblique incidence. Based on this model, we highlight the potential to generate an isolated ultraintense phase-stabilized attosecond pulse
We present the results of 3-dimensional kinetic simulations and theoretical studies on the formation and evolution of the current sheet in a collisionless plasma during magnetic field annihilation in the ultra-relativistic limit. Annihilation of oppo sitively directed magnetic fields driven by two laser pulses interacting with underdense plasma target is accompanied by an electromagnetic burst generation. The induced strong non-stationary longitudinal electric field accelerates charged particles within the current sheet. Properties of the laser-plasma target configuration are discussed in the context of the laboratory modeling for charged particle acceleration and gamma flash generation in astrophysics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا