ترغب بنشر مسار تعليمي؟ اضغط هنا

Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics

305   0   0.0 ( 0 )
 نشر من قبل Kartik Srinivasan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The on-chip creation of coherent light at visible wavelengths is crucial to field-level deployment of spectroscopy and metrology systems. Although on-chip lasers have been implemented in specific cases, a general solution that is not restricted by limitations of specific gain media has not been reported. Here, we propose creating visible light from an infrared pump by widely-separated optical parametric oscillation (OPO) using silicon nanophotonics. The OPO creates signal and idler light in the 700 nm and 1300 nm bands, respectively, with a 900 nm pump. It operates at a threshold power of (0.9 +/- 0.1) mW, over 50x smaller than other widely-separated microcavity OPO works, which have only been reported in the infrared. This low threshold enables direct pumping without need of an intermediate optical amplifier. We further show how the device design can be modified to generate 780 nm and 1500 nm light with a similar power efficiency. Our nanophotonic OPO shows distinct advantages in power efficiency, operation stability, and device scalability, and is a major advance towards flexible on-chip generation of coherent visible light.

قيم البحث

اقرأ أيضاً

Materials with strong $chi^{(2)}$ optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss $chi^{(2)}$ materials remains challenging and limi ts the threshold power of on-chip $chi^{(2)}$ OPO. Here we report the first on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase matched, high-quality microring resonator, whose threshold power ($sim$30 $mu$W) is 400 times lower than that in previous $chi^{(2)}$ integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained at a pump power of 93 $mu$W. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase matching and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides an potential platform for realizing photonic neural networks.
Topological insulators possess protected boundary states which are robust against disorders and have immense implications in both fermionic and bosonic systems. Harnessing these topological effects in non-equilibrium scenarios is highly desirable and has led to the development of topological lasers. The topologically protected boundary states usually lie within the bulk bandgap, and selectively exciting them without inducing instability in the bulk modes of bosonic systems is challenging. Here, we consider topological parametrically driven nonlinear resonator arrays that possess complex eigenvalues only in the edge modes in spite of the uniform pumping. We show parametric oscillation occurs in the topological boundary modes of one and two-dimensional systems as well as in the corner modes of a higher-order topological insulator system. Furthermore, we demonstrate squeezing dynamics below the oscillation threshold, where the quantum properties of the topological edge modes are robust against certain disorders. Our work sheds light on the dynamics of weakly nonlinear topological systems driven out of equilibrium and reveals their intriguing behavior in the quantum regime.
Whispering gallery resonators (WGRs), based on total internal reflection, possess high quality factors in a broad spectral range. Thus, nonlinear optical processes in such cavities are ideally suited for the generation of broadband or tunable electro magnetic radiation. Experimentally and theoretically, we investigate the tunability of optical parametric oscillation in a radially structured WGR made of lithium niobate. With a 1.04 /mum pump wave, the signal and idler waves are tuned from 1.78 to 2.5 mum - including the point of degeneracy - by varying the temperature between 20 and 62 {deg}C. A weak off-centering of the radial domain structure extends considerably the tuning capabilities. The oscillation threshold lies in the mW-power range.
Noiseless optical components are critical for applications ranging from metrology to quantum communication. Here we characterize several commercial telecom C-band fiber components for parasitic noise using a tunable laser. We observe the spectral sig nature of trace concentrations of erbium in all devices from the underlying optical crystals including YVO4, LiNbO3, TeO2 and AMTIR glass. Due to the long erbium lifetime, these signals are challenging to mitigate at the single photon level in the telecom range, and suggests the need for higher purity optical crystals.
Despite recent progress in nonlinear optics in wavelength-scale resonators, there are still open questions on the possibility of parametric oscillation in such resonators. We present a general approach to predict the behavior and estimate the oscilla tion threshold of multi-mode subwavelength and wavelength-scale optical parametric oscillators (OPOs). As an example, we propose an OPO based on Mie-type multipolar resonances, and we demonstrate that due to the low-Q nature of multipolar modes in wavelength-scale resonators, there is a nonlinear interaction between these modes. As a result, the OPO threshold, compared to the single-mode case, can be reduced by a factor that is significantly larger than the number of interacting modes. The multi-mode interaction can also lead to a phase transition manifested through a sudden change in the parametric gain as well as the oscillation threshold, which can be utilized for enhanced sensing. We establish an explicit connection between the second-harmonic generation efficiency and the OPO threshold. This allows us to estimate the OPO threshold based on measured or simulated second-harmonic generation in different classes of resonators, such as bound states in the continuum and inversely designed resonators. Our approach for analyzing and modeling miniaturized OPOs can open unprecedented opportunities for classical and quantum nonlinear photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا