ﻻ يوجد ملخص باللغة العربية
A well-known conjecture of Tuza asserts that if a graph has at most $t$ pairwise edge-disjoint triangles, then it can be made triangle-free by removing at most $2t$ edges. If true, the factor 2 would be best possible. In the directed setting, also asked by Tuza, the analogous statement has recently been proven, however, the factor 2 is not optimal. In this paper, we show that if an $n$-vertex directed graph has at most $t$ pairwise arc-disjoint directed triangles, then there exists a set of at most $1.8t+o(n^2)$ arcs that meets all directed triangles. We complement our result by presenting two constructions of large directed graphs with $tinOmega(n^2)$ whose smallest such set has $1.5t-o(n^2)$ arcs.
Alon and Yuster proved that the number of orientations of any $n$-vertex graph in which every $K_3$ is transitively oriented is at most $2^{lfloor n^2/4rfloor}$ for $n geq 10^4$ and conjectured that the precise lower bound on $n$ should be $n geq 8$.
Using standard methods (due to Janson, Stein-Chen, and Talagrand) from probabilistic combinatorics, we explore the following general theme: As one progresses from each member of a family of objects ${cal A}$ being covered by at most one object in a r
We study several problems on geometric packing and covering with movement. Given a family $mathcal{I}$ of $n$ intervals of $kappa$ distinct lengths, and another interval $B$, can we pack the intervals in $mathcal{I}$ inside $B$ (respectively, cover $
Given a convex disk $K$ and a positive integer $k$, let $vartheta_T^k(K)$ and $vartheta_L^k(K)$ denote the $k$-fold translative covering density and the $k$-fold lattice covering density of $K$, respectively. Let $T$ be a triangle. In a very recent p
We introduce a simple and efficient algorithm for stochastic linear bandits with finitely many actions that is asymptotically optimal and (nearly) worst-case optimal in finite time. The approach is based on the frequentist information-directed sampli