ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of Structured Light Enables Nearly Perfect Noise-filtering

72   0   0.0 ( 0 )
 نشر من قبل Jian-Dong Zhang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The performance of laser-based active sensing has been severely limited by two types of noise: electrical noise, stemming from elements; optical noise, laser jamming from an eavesdropper and background from environment. Conventional methods to filter optical noise take advantage of the differences between signal and noise in time, wavelength, and polarization. However, they may be limited when the noise and signal share the same information on these degrees of freedoms (DoFs). In order to overcome this drawback, we experimentally demonstrate a groundbreaking noise-filtering method by controlling orbital angular momentum (OAM) to distinguish signal from noise. We provide a proof-of-principle experiment and discuss the dependence of azimuthal index of OAM and detection aperture on signal-to-noise ratio (SNR). Our results suggest that using OAM against noise is an efficient method, offering a new route to optical sensing immersed in high-level noise.

قيم البحث

اقرأ أيضاً

Optical communication is an integral part of the modern economy, having all but replaced electronic communication systems. Future growth in bandwidth appears to be on the horizon using structured light, encoding information into the spatial modes of light, and transmitting them down fibre and free-space, the latter crucial for addressing last mile and digitally disconnected communities. Unfortunately, patterns of light are easily distorted, and in the case of free-space optical communication, turbulence is a significant barrier. Here we review recent progress in structured light in turbulence, first with a tutorial style summary of the core concepts, before highlighting the present state-of-the-art in the field. We support our review with new experimental studies that reveal which types of structured light are best in turbulence, the behaviour of vector versus scalar light in turbulence, the trade-off of diversity and multiplexing, and how turbulence models can be exploited for enhanced optical signal processing protocols. This comprehensive treatise will be invaluable to the large communities interested in free-space optical communication with spatial modes of light.
The role of sparse representations in the context of structured noise filtering is discussed. A strategy, especially conceived so as to address problems of an ill posed nature, is presented. The proposed approach revises and extends the Oblique Match ing Pursuit technique. It is shown that, by working with an orthogonal projection of the signal to be filtered, it is possible to apply orthogonal matching pursuit like strategies in order to accomplish the required signal discrimination
We demonstrate the coherent frequency conversion of structured light, optical beams in which the phase varies in each point of the transverse plane, from the near infrared (803nm) to the visible (527nm). The frequency conversion process makes use of sum-frequency generation in a periodically poled lithium niobate (ppLN) crystal with the help of a 1540-nm Gaussian pump beam. We perform far-field intensity measurements of the frequency-converted field, and verify the sought-after transformation of the characteristic intensity and phase profiles for various input modes. The coherence of the frequency-conversion process is confirmed using a mode-projection technique with a phase mask and a single-mode fiber. The presented results could be of great relevance to novel applications in high-resolution microscopy and quantum information processing.
The structural versatility of light underpins an outstanding collection of optical phenomena where both geometrical and topological states of light can dictate how matter will respond or display. Light possesses multiple degrees of freedom such as am plitude, and linear, spin angular, and orbital angular momenta, but the ability to adaptively engineer the spatio-temporal distribution of all these characteristics is primarily curtailed by technologies used to impose any desired structure to light. We describe a foundational demonstration that examines a laser architecture offering integrated spatio-temporal field control and programmability, thereby presenting unique opportunities for generating light by design to exploit its topology.
Here we make use of vanadium dioxide (VO2) to design a bifunctional metasurface working at the same targeted frequency. With the increase of temperature, the functionality of the designed metasurface can switch from a multi-channel retroreflector to a perfect absorber, caused by the phase transition of VO2 from insulator to conductor. Different from traditional bifunctional metasurfaces designed by simple composition of two functionalities, our proposed bifunctional metasurface is based on the interaction between two functionalities. The device shows good potential for the combination of wavefront manipulation and optical absorption, therefore providing a promising approach for switchable detection and anti-detection devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا