ترغب بنشر مسار تعليمي؟ اضغط هنا

Sup-sums principles for F-divergence, Kullback--Leibler divergence, and new definition for t-entropy

85   0   0.0 ( 0 )
 نشر من قبل Victor Bakhtin
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The article presents new sup-sums principles for integral F-divergence for arbitrary convex function F and arbitrary (not necessarily positive and absolutely continuous) measures. As applications of these results we derive the corresponding sup-sums principle for Kullback--Leibler divergence and work out new `integral definition for t-entropy explicitly establishing its relation to Kullback--Leibler divergence.



قيم البحث

اقرأ أيضاً

Bayesian nonparametric statistics is an area of considerable research interest. While recently there has been an extensive concentration in developing Bayesian nonparametric procedures for model checking, the use of the Dirichlet process, in its simp lest form, along with the Kullback-Leibler divergence is still an open problem. This is mainly attributed to the discreteness property of the Dirichlet process and that the Kullback-Leibler divergence between any discrete distribution and any continuous distribution is infinity. The approach proposed in this paper, which is based on incorporating the Dirichlet process, the Kullback-Leibler divergence and the relative belief ratio, is considered the first concrete solution to this issue. Applying the approach is simple and does not require obtaining a closed form of the relative belief ratio. A Monte Carlo study and real data examples show that the developed approach exhibits excellent performance.
Renyi divergence is related to Renyi entropy much like Kullback-Leibler divergence is related to Shannons entropy, and comes up in many settings. It was introduced by Renyi as a measure of information that satisfies almost the same axioms as Kullback -Leibler divergence, and depends on a parameter that is called its order. In particular, the Renyi divergence of order 1 equals the Kullback-Leibler divergence. We review and extend the most important properties of Renyi divergence and Kullback-Leibler divergence, including convexity, continuity, limits of $sigma$-algebras and the relation of the special order 0 to the Gaussian dichotomy and contiguity. We also show how to generalize the Pythagorean inequality to orders different from 1, and we extend the known equivalence between channel capacity and minimax redundancy to continuous channel inputs (for all orders) and present several other minimax results.
99 - Tomohiro Nishiyama 2019
In this paper, we derive a useful lower bound for the Kullback-Leibler divergence (KL-divergence) based on the Hammersley-Chapman-Robbins bound (HCRB). The HCRB states that the variance of an estimator is bounded from below by the Chi-square divergen ce and the expectation value of the estimator. By using the relation between the KL-divergence and the Chi-square divergence, we show that the lower bound for the KL-divergence which only depends on the expectation value and the variance of a function we choose. This lower bound can also be derived from an information geometric approach. Furthermore, we show that the equality holds for the Bernoulli distributions and show that the inequality converges to the Cram{e}r-Rao bound when two distributions are very close. We also describe application examples and examples of numerical calculation.
We propose a method to fuse posterior distributions learned from heterogeneous datasets. Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors and proceeds using a simple assign-and-average app roach. The components of the dataset posteriors are assigned to the proposed global model components by solving a regularized variant of the assignment problem. The global components are then updated based on these assignments by their mean under a KL divergence. For exponential family variational distributions, our formulation leads to an efficient non-parametric algorithm for computing the fused model. Our algorithm is easy to describe and implement, efficient, and competitive with state-of-the-art on motion capture analysis, topic modeling, and federated learning of Bayesian neural networks.
We introduce hardness in relative entropy, a new notion of hardness for search problems which on the one hand is satisfied by all one-way functions and on the other hand implies both next-block pseudoentropy and inaccessible entropy, two forms of com putational entropy used in recent constructions of pseudorandom generators and statistically hiding commitment schemes, respectively. Thus, hardness in relative entropy unifies the latter two notions of computational entropy and sheds light on the apparent duality between them. Additionally, it yields a more modular and illuminating proof that one-way functions imply next-block inaccessible entropy, similar in structure to the proof that one-way functions imply next-block pseudoentropy (Vadhan and Zheng, STOC 12).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا