ﻻ يوجد ملخص باللغة العربية
We consider the scattering matrices of massive quantum field theories with no bound states and a global $O(N)$ symmetry in two spacetime dimensions. In particular we explore the space of two-to-two S-matrices of particles of mass $m$ transforming in the vector representation as restricted by the general conditions of unitarity, crossing, analyticity and $O(N)$ symmetry. We found a rich structure in that space by using convex maximization and in particular its convex dual minimization problem. At the boundary of the allowed space special geometric points such as vertices were found to correspond to integrable models. The dual convex minimization problem provides a novel and useful approach to the problem allowing, for example, to prove that generically the S-matrices so obtained saturate unitarity and, in some cases, that they are at vertices of the allowed space.
Three related analyses of $phi^4$ theory with $O(N)$ symmetry are presented. In the first, we review the $O(N)$ model over the $p$-adic numbers and the discrete renormalization group transformations which can be understood as spin blocking in an ultr
In the past year, in arXiv:1208.6066 we proposed a revisited S-matrix approach to efficiently find the bosonic terms of the open superstring low energy effective lagrangian (OSLEEL). This approach allows to compute the ${alpha}^N$ terms of the OSLEEL
N=4 Poincare supergravity has a global SU(1,1) duality symmetry that acts manifestly only on shell as it involves duality rotations of vector fields. A U(1) subgroup of this symmetry is known to be anomalous at the quantum level in the presence of a
We determine, for the first time, the scaling dimensions of a family of fixed-charge operators stemming from the critical $O(N)$ model in 4-$epsilon$ dimensions to the leading and next to leading order terms in the charge expansion but to all-orders
We analyze the pentagon transitions involving arbitrarily many flux-tube gluonic excitations and bound states thereof in planar N=4 Super-Yang-Mills theory. We derive all-loop expressions for all these transitions by factorization and fusion of the e