ترغب بنشر مسار تعليمي؟ اضغط هنا

LOCALIS: Locally-adaptive Line Simplification for GPU-based Geographic Vector Data Visualization

84   0   0.0 ( 0 )
 نشر من قبل Alireza Amiraghdam
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visualization of large vector line data is a core task in geographic and cartographic systems. Vector maps are often displayed at different cartographic generalization levels, traditionally by using several discrete levels-of-detail (LODs). This limits the generalization levels to a fixed and predefined set of LODs, and generally does not support smooth LOD transitions. However, fast GPUs and novel line rendering techniques can be exploited to integrate dynamic vector map LOD management into GPU-based algorithms for locally-adaptive line simplification and real-time rendering. We propose a new technique that interactively visualizes large line vector datasets at variable LODs. It is based on the Douglas-Peucker line simplification principle, generating an exhaustive set of line segments whose specific subsets represent the lines at any variable LOD. At run time, an appropriate and view-dependent error metric supports screen-space adaptive LOD levels and the display of the correct subset of line segments accordingly. Our implementation shows that we can simplify and display large line datasets interactively. We can successfully apply line style patterns, dynamic LOD selection lenses, and anti-aliasing techniques to our line rendering.



قيم البحث

اقرأ أيضاً

Despite the recent advances in graphics hardware capabilities, a brute force approach is incapable of interactively displaying terabytes of data. We have implemented a system that uses hierarchical level-of-detailing for the results of cosmological s imulations, in order to display visually accurate results without loading in the full dataset (containing over 10 billion points). The guiding principle of the program is that the user should not be able to distinguish what they are seeing from a full rendering of the original data. Furthermore, by using a tree-based system for levels of detail, the size of the underlying data is limited only by the capacity of the IO system containing it.
We have recently developed an algorithm for vector field visualization with oriented streamlines, able to depict the flow directions everywhere in a dense vector field and the sense of the local orientations. The algorithm has useful applications in the visualization of the director field in nematic liquid crystals. Here we propose an improvement of the algorithm able to enhance the visualization of the local magnitude of the field. This new approach of the algorithm is compared with the same procedure applied to the Line Integral Convolution (LIC) visualization.
85 - Matthew A. Petroff 2021
Color cycles, ordered sets of colors for data visualization, that balance aesthetics with accessibility considerations are presented. In order to model aesthetic preference, data were collected with an online survey, and the results were used to trai n a machine-learning model. To ensure accessibility, this model was combined with minimum-perceptual-distance constraints, including for simulated color-vision deficiencies, as well as with minimum-lightness-distance constraints for grayscale printing, maximum-lightness constraints for maintaining contrast with a white background, and scores from a color-saliency model for ease of use of the colors in verbal and written descriptions. Optimal color cycles containing six, eight, and ten colors were generated using the data-driven aesthetic-preference model and accessibility constraints. Due to the balance of aesthetics and accessibility considerations, the resulting color cycles can serve as reasonable defaults in data-plotting codes.
We present a novel algorithm to compute multi-scale curvature fields on triangle meshes. Our algorithm is based on finding robust mean curvatures using the ball neighborhood, where the radius of a ball corresponds to the scale of the features. The es sential problem is to find a good radius for each ball to obtain a reliable curvature estimation. We propose an algorithm that finds suitable radii in an automatic way. In particular, our algorithm is applicable to meshes produced by image-based reconstruction systems. These meshes often contain geometric features at various scales, for example if certain regions have been captured in greater detail. We also show how such a multi-scale curvature field can be converted to a density field and used to guide applications like mesh simplification.
We present a novel privacy preservation strategy for decentralized visualization. The key idea is to imitate the flowchart of the federated learning framework, and reformulate the visualization process within a federated infrastructure. The federatio n of visualization is fulfilled by leveraging a shared global module that composes the encrypted externalizations of transformed visual features of data pieces in local modules. We design two implementations of federated visualization: a prediction-based scheme, and a query-based scheme. We demonstrate the effectiveness of our approach with a set of visual forms, and verify its robustness with evaluations. We report the value of federated visualization in real scenarios with an expert review.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا