ترغب بنشر مسار تعليمي؟ اضغط هنا

The Contribution of Dwarf Planets to the Origin of Jupiter Family Comets

138   0   0.0 ( 0 )
 نشر من قبل Marco A. Mu\\~noz-Guti\\'errez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the long-term evolution of a bias-free orbital representation of the cometary nuclei (with diameters above 2 km) of the Kuiper belt, using the so-called L7 synthetic model from CFEPS, which consists of three dynamical sub-populations: the Classical, the Resonant, and the Scattering. The dynamical evolution of belt particles is studied under the gravitational influence of the Sun and the four giant planets, as well as of the 34 largest known trans-Neptunian objects (TNOs with $H_V < 4$). Here we indistinctly call Dwarf Planets (DPs) to the full sample of 34 large TNOs. Over a 1 Gyr timescale, we analyze the secular influence of the DPs over Kuiper belt disk particles and their contribution to the injection rate of new visible Jupiter Family Comets (JFCs). We found that DPs globally increase the number of JFCs by 12.6% when compared with the comets produced by the giant planets alone. When considering each population separately, we find that the increment produced by DPs is 17%, 12%, and 3% for the Classical, Resonant, and Scattering populations, respectively. Given the rate of escapes from the Kuiper belt, we find upper limits to the number of objects in each population required to maintain the JFCs in steady-state; the results are $55.9times10^6$, $78.5times10^6$, and $274.3times10^6$ for the Scattering, Resonant, and Classical populations, respectively. Finally, we find that the Plutinos are the most important source of comets which were originally in a resonant configuration, where the presence of Pluto alone enhances by 10% the number of JFCs.

قيم البحث

اقرأ أيضاً

Recent dynamical analyses suggest that some Jupiter family comets (JFCs) may originate in the main asteroid belt instead of the outer solar system. This possibility is particularly interesting given evidence that icy main-belt objects are known to be present in the Themis asteroid family. We report results from dynamical analyses specifically investigating the possibility that icy Themis family members could contribute to the observed population of JFCs. Numerical integrations show that such dynamical evolution is indeed possible via a combination of eccentricity excitation apparently driven by the nearby 2:1 mean-motion resonance with Jupiter, gravitational interactions with planets other than Jupiter, and the Yarkovsky effect. We estimate that, at any given time, there may be tens of objects from the Themis family on JFC-like orbits with the potential to mimic active JFCs from the outer solar system, although not all, or even any, may necessarily be observably active. We find that dynamically evolved Themis family objects on JFC-like orbits have semimajor axes between 3.15 au and 3.40 au for the vast majority of their time on such orbits, consistent with the strong role that the 2:1 mean-motion resonance with Jupiter likely plays in their dynamical evolution. We conclude that a contribution from the Themis family to the active JFC population is plausible, although further work is needed to better characterize this contribution.
Jupiter-family comets (JFCs) are the evolutionary products of trans-Neptunian objects (TNOs) that evolve through the giant planet region as Centaurs and into the inner solar system. Through numerical orbital evolution calculations following a large n umber of TNO test particles that enter the Centaur population, we have identified a short-lived dynamical Gateway, a temporary low-eccentricity region exterior to Jupiter through which the majority of JFCs pass. We apply an observationally based size distribution function to the known Centaur population and obtain an estimated Gateway region population. We then apply an empirical fading law to the rate of incoming JFCs implied by the the Gateway region residence times. Our derived estimates are consistent with observed population numbers for the JFC and Gateway populations. Currently, the most notable occupant of the Gateway region is 29P/Schwassmann-Wachmann 1 (SW1), a highly active, regularly outbursting Centaur. SW1s present-day, very-low-eccentricity orbit was established after a 1975 Jupiter conjunction and will persist until a 2038 Jupiter conjunction doubles its eccentricity and pushes its semi-major axis out to its current aphelion. Subsequent evolution will likely drive SW1s orbit out of the Gateway region, perhaps becoming one of the largest JFCs in recorded history. The JFC Gateway region coincides with a heliocentric distance range where the activity of observed cometary bodies increases significantly. SW1s activity may be typical of the early evolutionary processing experienced by most JFCs. Thus, the Gateway region, and its most notable occupant SW1, are critical to both the dynamical and physical transition between Centaurs and JFCs.
Radio observations from decimetric to submillimetric wavelengths are now a basic tool for the investigation of comets. Spectroscopic observations allow us i) to monitor the gas production rate of the comets, by directly observing the water molecule, or by observing secondary products (e.g., the OH radical) or minor species (e.g., HCN); ii) to investigate the chemical composition of comets; iii) to probe the physical conditions of cometary atmospheres: kinetic temperature and expansion velocity. Continuum observations probe large-size dust particles and (for the largest objects) cometary nuclei. Comets are classified from their orbital characteristics into two separate classes: i) nearly-isotropic, mainly long-period comets and ii) ecliptic, short-period comets, the so-called Jupiter-family comets. These two classes apparently come from two different reservoirs, respectively the Oort cloud and the trans-Neptunian scattered disc. Due to their different history and - possibly - their different origin, they may have different chemical and physical properties that are worth being investigated. The present article reviews the contribution of radio observations to our knowledge of the Jupiter-family comets (JFCs). The difficulty of such a study is the commonly low gas and dust productions of these comets. Long-period, nearly-isotropic comets from the Oort cloud are better known from Earth-based observations. On the other hand, Jupiter-family comets are more easily accessed by space missions. However, unique opportunities to observe Jupiter-family comets are offered when these objects come by chance close to the Earth. About a dozen JFCs were successfully observed by radio techniques up to now. No obvious evidence for different properties between JFCs and other families of comets is found.
Sublimative outgassing of comets produces torques that alter the rotation state of their nuclei. Recently, parameterized sublimative torque models have been developed to study rotation state changes of individual comet nuclei and populations of comet ary bodies. However, these models simplify the interactions between the escaping gas and cometary surface into only a few parameters that hide the details of these complex interactions. Here we directly compare the X-parameter model (Samarasinha & Mueller, 2013) with the SYORP model (Steckloff & Jacobson, 2016) to tease out insights into the details of the gas-surface interactions driving sublimative torques. We find that, for both of these models to accurately model sublimative torques, the number of sublimating molecules that contribute to the net torque is largely independent of the detailed shape and activity of the nucleus, but rather depends primarily on the size of the nucleus and the effective heliocentric distance of the comet. We suggest that cometary activity must be largely restricted to regions of steep gravitational surface slopes (above the angle of repose), where mass wasting can refresh activity by shedding mantles of refractory materials and exposing fresh volatiles. We propose a new classification scheme for comets based on the frequency of this mass-wasting process (relative to the timescale of activity fading): quasi-equilibrium, episodic, quasi-dormant, and extinct.
We report new lightcurves and phase functions for nine Jupiter-family comets (JFCs). They were observed in the period 2004-2015 with various ground telescopes as part of the Survey of Ensemble Physical Properties of Cometary Nuclei (SEPPCoN) as well as during devoted observing campaigns. We add to this a review of the properties of 35 JFCs with previously published rotation properties. The photometric time-series were obtained in Bessel R, Harris R and SDSS r filters and were absolutely calibrated using stars from the Pan-STARRS survey. This specially-developed method allowed us to combine data sets taken at different epochs and instruments with absolute-calibration uncertainty down to 0.02 mag. We used the resulting time series to improve the rotation periods for comets 14P/Wolf, 47P/Ashbrook-Jackson, 94P/Russell, and 110P/Hartley 3 and to determine the rotation rates of comets 93P/Lovas and 162P/Siding-Spring for the first time. In addition to this, we determined the phase functions for seven of the examined comets and derived geometric albedos for eight of them. We confirm the known cut-off in bulk densities at $sim$0.6 g $mathrm{cm^{-3}}$ if JFCs are strengthless. Using the model of Davidsson (2001) for prolate ellipsoids with typical density and elongations, we conclude that none of the known JFCs require tensile strength larger than 10-25 Pa to remain stable against rotational instabilities. We find evidence for an increasing linear phase function coefficient with increasing geometric albedo. The median linear phase function coefficient for JFCs is 0.046 mag/deg and the median geometric albedo is 4.2 per cent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا