ﻻ يوجد ملخص باللغة العربية
A new method SREAG (spherical rectangular equal-area grid) is proposed to divide a spherical surface into equal-area cells. The method is based on dividing a sphere into latitudinal rings of near-constant width with further splitting each ring into equal-area cells. It is simple in construction and use, and provides more uniform width of the latitudinal rings than other methods of equal-area pixelization of a spherical surface. The new method provides a rectangular grid cells with the latitude- and longitude-oriented boundaries, near-square cells in the equatorial rings, and the closest to uniform width of the latitudinal rings as compared with other equal-area isolatitudinal grids. The binned data is easy to visualize and interpret in terms of the longitude-latitude rectangular coordinate system, natural for astronomy and geodesy. Grids with arbitrary number of rings and, consequently, wide and theoretically unlimited range of cell size can be built by the proposed method. Comparison with other methods used in astronomical research showed the advantages of the new approach in sense of uniformity of the ring width, a wider range of grid resolution, and simplicity of use.
A new method is proposed to divide a spherical surface into equal-area cells. The method is based on dividing a sphere into several latitudinal bands of near-constant span with further division of each band into equal-area cells. It is simple in cons
A new method Spherical Rectangular Equal-Area Grid (SREAG) was proposed in Malkin (2019) for splitting spherical surface into equal-area rectangular cells. In this work, some more detailed features of SREAG are presented. The maximum number of rings
The main characteristics of a new concept of spherical gaseous detectors, with some details on its operation are first given. The very low energy threshold of such detector has led to investigations of its potential performance for dark matter partic
The study of particle motion on spherical surfaces is relevant to adsorption on buckyballs and other solid particles. This paper reports results for the binding energy of such dimers, consisting of two light particles (He atoms or hydrogen molecules)
The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of par- ticle detector, with a broad range of applications. Its main features include a very low energy threshold independent of the volume (due to its very low c