ترغب بنشر مسار تعليمي؟ اضغط هنا

Brans-Dicke gravity with a cosmological constant smoothes out $Lambda$CDM tensions

104   0   0.0 ( 0 )
 نشر من قبل Joan Sola
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze Brans-Dicke gravity with a cosmological constant, $Lambda$, and cold dark matter (BD-$Lambda$CDM for short) in the light of the latest cosmological observations on distant supernovae, Hubble rate measurements at different redshifts, baryonic acoustic oscillations, large scale structure formation data, gravitational weak-lensing and the cosmic microwave background under full Planck 2015 CMB likelihood. Our analysis includes both the background and perturbations equations. We find that BD-$Lambda$CDM is observationally favored as compared to the concordance $Lambda$CDM model, which is traditionally defined within General Relativity (GR). In particular, some well-known persisting tensions of the $Lambda$CDM with the data, such as the excess in the mass fluctuation amplitude $sigma_8$ and specially the acute $H_0$-tension with the local measurements, essentially disappear in this context. Furthermore, viewed from the GR standpoint, BD-$Lambda$CDM cosmology mimics quintessence at $gtrsim3sigma$ c.l. near our time.

قيم البحث

اقرأ أيضاً

We present a full-fledged analysis of Brans-Dicke cosmology with a cosmological constant and cold dark matter (BD-$Lambda$CDM for short). We extend the scenarios where the current cosmological value of the BD-field is restricted by the local astrophy sical domain to scenarios where that value is fixed only by the cosmological observations, which should be more natural in view of the possible existence of local screening mechanims. Our analysis includes both the background and perturbations equations in different gauges. We find that the BD-$Lambda$CDM is favored by the overall cosmological data as compared to the concordance GR-$Lambda$CDM model, namely data on distant supernovae, cosmic chronometers, local measurements of the Hubble parameter, baryonic acoustic oscillations, Large-Scale Structure formation and the cosmic microwave background under full Planck 2018 CMB likelihood. We also test the impact of Strong and Weak-Lensing data on our results, which can be significant. We find that the BD-$Lambda$CDM can mimic effective quintessence with a significance of about $3-3.5sigma$ c.l. (depending on the lensing datasets). The fact that the BD-$Lambda$CDM behaves effectively as a Running Vacuum Model (RVM) when viewed from the GR perspective helps to alleviate some of the existing tensions with the data, such as the $sigma_8$ excess predicted by GR-$Lambda$CDM. On the other hand, the BD-$Lambda$CDM model has a crucial bearing on the acute $H_0$-tension with the local measurements, which is rendered virtually harmless owing to the small increase of the effective value of the gravitational constant with the expansion. The simultaneous alleviation of the two tensions is a most remarkable feature of BD-gravity with a cosmological constant in the light of the current observations, and hence goes in support of BD-$Lambda$CDM against GR-$Lambda$CDM
Inspired by the recent conjecture that the universe has transitioned from AdS vacua to dS vacua in the late universe made via graduated dark energy, we extend the $Lambda$CDM model by a cosmological `constant ($Lambda_{rm s}$) that switches sign at c ertain redshift, $z_dagger$, and name it as $Lambda_{rm s}$CDM. We discuss the construction and theoretical features of this model, and find out that, when the consistency of $Lambda_{rm s}$CDM with the CMB data is ensured, (i) $z_daggergtrsim1.1$ is implied by the condition that the universe monotonically expands, (ii) $H_0$ is inversely correlated with $z_dagger$ and reaches $approx74.5~{rm km, s^{-1}, Mpc^{-1}}$ for $z_dagger=1.5$, (iii) $H(z)$ presents an excellent fit to the Ly-$alpha$ measurements provided that $z_daggerlesssim 2.34$. We further investigate the model constraints by using the full Planck CMB data, with and without BAO data. We find that the CMB data alone does not constrain $z_dagger$ but CMB+BAO dataset favors the sign switch of $Lambda_{rm s}$ providing the constraint: $z_dagger=2.44pm0.29$ (68% CL). Our analysis reveals that the lower and upper limits of $z_dagger$ are controlled by the Galaxy and Ly-$alpha$ BAO measurements, respectively, and the larger $z_{dagger}$ values imposed by the Galaxy BAO data prevent the model from achieving the highest local $H_0$ measurements. In general, $Lambda_{rm s}$CDM (i) relaxes the $H_0$ tension while being fully consistent with the TRGB measurement, (ii) removes the discrepancy with the Ly-$alpha$ measurements, (iii) relaxes the $S_8$ tension, and (iv) finds a better agreement with the BBN constraints of physical baryon density. We find no strong statistical evidence to discriminate between the $Lambda_{rm s}$CDM and $Lambda$CDM models. However, interesting and promising features of $Lambda_{rm s}$CDM provide an upper edge over $Lambda$CDM.
We present an explicit detailed theoretical and observational investigation of an anisotropic massive Brans-Dicke (BD) gravity extension of the standard $Lambda$CDM model, wherein the extension is characterized by two additional degrees of freedom; t he BD parameter, $omega$, and the present day density parameter corresponding to the shear scalar, $Omega_{sigma^2,0}$. The BD parameter, determining the deviation from general relativity (GR), by alone characterizes both the dynamics of the effective dark energy (DE) and the redshift dependence of the shear scalar. These two affect each other depending on $omega$, namely, the shear scalar contributes to the dynamics of the effective DE, and its anisotropic stress --which does not exist in scalar field models of DE within GR-- controls the dynamics of the shear scalar deviating from the usual $propto(1+z)^6$ form in GR. We mainly confine the current work to non-negative $omega$ values as it is the right sign --theoretically and observationally-- for investigating the model as a correction to the $Lambda$CDM. By considering the current cosmological observations, we find that $omegagtrsim 250$, $Omega_{sigma^2,0}lesssim 10^{-23}$ and the contribution of the anisotropy of the effective DE to this value is insignificant. We conclude that the simplest anisotropic massive BD gravity extension of the standard $Lambda$CDM model exhibits no significant deviations from it all the way to the Big Bang Nucleosynthesis. We also point out the interesting features of the model in the case of negative $omega$ values; for instance, the constraints on $Omega_{sigma^2,0}$ could be relaxed considerably, the values of $omegasim-1$ (relevant to string theories) predict dramatically different dynamics for the expansion anisotropy.
We construct a generalization of the standard $Lambda$CDM model, wherein we simultaneously replace the spatially flat Robertson-Walker metric with its simplest anisotropic generalization (LRS Bianchi I metric), and couple the cold dark matter to the gravity in accordance with the energy-momentum squared gravity (EMSG) of the form $f(T_{mu u}T^{mu u})propto T_{mu u}T^{mu u}$. These two modifications -- namely, two new stiff fluid-like terms of different nature -- can mutually cancel out, i.e., the shear scalar can be screened completely, and reproduce mathematically exactly the same Friedmann equation of the standard $Lambda$CDM model. This evades the BBN limits on the anisotropy, and thereby provides an opportunity to manipulate the cosmic microwave background quadrupole temperature fluctuation at the desired amount. We further discuss the consequences of the model on the very early times and far future of the Universe. This study presents also an example of that the EMSG of the form $f(T_{mu u}T^{mu u})propto T_{mu u}T^{mu u}$, as well as similar type other constructions, is not necessarily relevant only to very early Universe but may even be considered in the context of a major problem of the current cosmology related to the present-day Universe, the so-called $H_0$ problem.
Cosmological tensions can arise within $Lambda$CDM scenario amongst different observational windows, which may indicate new physics beyond the standard paradigm if confirmed by measurements. In this article, we report how to alleviate both the $H_0$ and $sigma_8$ tensions simultaneously within torsional gravity from the perspective of effective field theory (EFT). Following these observations, we construct concrete models of Lagrangians of torsional gravity. Specifically, we consider the parametrization $f(T)=-T-2Lambda/M_P^2+alpha T^beta$, where two out of the three parameters are independent. This model can efficiently fit observations solving the two tensions. To our knowledge, this is the first time where a modified gravity theory can alleviate both $H_0$ and $sigma_8$ tensions simultaneously, hence, offering an additional argument in favor of gravitational modification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا