ﻻ يوجد ملخص باللغة العربية
We consider a class of six-order Cahn-Hilliard equations with logarithmic type potential. This system is closely connected with some important phase-field models relevant in different applications, for instance, the functionalized Cahn-Hilliard equation that describes phase separation in mixtures of amphiphilic molecules in solvent, and the Willmore regularization of Cahn-Hilliard equation for anisotropic crystal and epitaxial growth. The singularity of the configuration potential guarantees that the solution always stays in the physical relevant domain [-1,1]. Meanwhile, the resulting system is characterized by some highly singular diffusion terms that make the mathematical analysis more involved. We prove existence and uniqueness of global weak solutions and show their parabolic regularization property for any positive time. Besides, we investigate long-time behavior of the system, proving existence of the global attractor for the associated dynamical process in a suitable complete metric space.
Here we consider the nonlocal Cahn-Hilliard equation with constant mobility in a bounded domain. We prove that the associated dynamical system has an exponential attractor, provided that the potential is regular. In order to do that a crucial step is
P. Galenko et al. proposed a modified Cahn-Hilliard equation to model rapid spinodal decomposition in non-equilibrium phase separation processes. This equation contains an inertial term which causes the loss of any regularizing effect on the solution
We describe a functional framework suitable to the analysis of the Cahn-Hilliard equation on an evolving surface whose evolution is assumed to be given textit{a priori}. The model is derived from balance laws for an order parameter with an associated
We study the asymptotic properties of the stochastic Cahn-Hilliard equation with the logarithmic free energy by establishing different dimension-free Harnack inequalities according to various kinds of noises. The main characteristics of this equation
We introduce and analyze the nonlocal variants of two Cahn-Hilliard type equations with reaction terms. The first one is the so-called Cahn-Hilliard-Oono equation which models, for instance, pattern formation in diblock-copolymers as well as in binar