ترغب بنشر مسار تعليمي؟ اضغط هنا

Trans-Neptunian objects found in the first four years of the Dark Energy Survey

96   0   0.0 ( 0 )
 نشر من قبل Pedro Bernardinelli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a catalog of 316 trans-Neptunian bodies detected by the Dark Energy Survey (DES). These objects include 245 discoveries by DES (139 not previously published) detected in $approx 60,000$ exposures from the first four seasons of the survey (Y4 data). The survey covers a contiguous 5000 deg$^2$ of the southern sky in the $grizY$ optical/NIR filter set, with a typical TNO in this part of the sky being targeted by $25-30$ Y4 exposures. We describe the processes for detection of transient sources and the linkage into TNO orbits, which are made challenging by the absence of the few-hour repeat observations employed by TNO-optimized surveys. We also describe the procedures for determining detection efficiencies vs. magnitude and estimating rates of false-positive linkages. This work presents all TNOs which were detected on $ge 6$ unique nights in the Y4 data and pass a sub-threshold confirmation test wherein we demand the the object be detectable in a stack of the individual images in which the orbit indicates an object should be present, but was not detected. This eliminates false positives and yields TNO detections complete to $rlesssim 23.3$ mag with virtually no dependence on orbital properties for bound TNOs at distance $30,{rm AU}<d<2500,{rm AU}.$ The final DES TNO catalog is expected to yield $>0.3$ mag more depth, and arcs of $>4$ years for nearly all detections.

قيم البحث

اقرأ أيضاً

In this paper we investigate how implementing machine learning could improve the efficiency of the search for Trans-Neptunian Objects (TNOs) within Dark Energy Survey (DES) data when used alongside orbit fitting. The discovery of multiple TNOs that a ppear to show a similarity in their orbital parameters has led to the suggestion that one or more undetected planets, an as yet undiscovered Planet 9, may be present in the outer Solar System. DES is well placed to detect such a planet and has already been used to discover many other TNOs. Here, we perform tests on eight different supervised machine learning algorithms, using a dataset consisting of simulated TNOs buried within real DES noise data. We found that the best performing classifier was the Random Forest which, when optimised, performed well at detecting the rare objects. We achieve an area under the receiver operating characteristic (ROC) curve, (AUC) $= 0.996 pm 0.001$. After optimizing the decision threshold of the Random Forest, we achieve a recall of 0.96 while maintaining a precision of 0.80. Finally, by using the optimized classifier to pre-select objects, we are able to run the orbit-fitting stage of our detection pipeline five times faster.
The outer Solar System contains a large number of small bodies (known as trans-Neptunian objects or TNOs) that exhibit diverse types of dynamical behavior. The classification of bodies in this distant region into dynamical classes -- sub-populations that experience similar orbital evolution -- aids in our understanding of the structure and formation of the Solar System. In this work, we propose an updated dynamical classification scheme for the outer Solar System. This approach includes the construction of a new (automated) method for identifying mean-motion resonances. We apply this algorithm to the current dataset of TNOs observed by the Dark Energy Survey (DES) and present a working classification for all of the DES TNOs detected to date. Our classification scheme yields 1 inner centaur, 19 outer centaurs, 21 scattering disk objects, 47 detached TNOs, 48 securely resonant objects, 7 resonant candidates, and 97 classical belt objects. Among the scattering and detached objects, we detect 8 TNOs with semi-major axes greater than 150 AU.
We test whether the population of extreme trans-Neptunian objects (eTNOs) detected in the Y4 Dark Energy Survey (DES) data exhibit azimuthal asymmetries which might be evidence of gravitational perturbations from an unseen super-Earth in a distant or bit. By rotating the orbits of the detected eTNOs, we construct a synthetic population which, when subject to the DES selection function, reproduces the detected distribution of eTNOs in the orbital elements $a,e,$ and $i$ as well as absolute magnitude $H$, but has uniform distributions in mean anomaly $M$, longitude of ascending node $Omega,$ and argument of perihelion $omega.$ We then compare the detected distributions in each of $Omega, omega,$ and $varpiequivOmega+omega$ to those expected from the isotropic population, using Kuipers variant of the Kolmogorov-Smirnov test. The three angles are tested for each of 4 definitions of the eTNO population, choosing among $a>(150,250)$ AU and perihelion $q>(30,37)$ AU. These choices yield 3--7 eTNOs in the DES Y4 sample. Among the twelve total tests, two have the likelihood of drawing the observed angles from the isotropic population at $p<0.05.$ The 3 detections at $a>250, q>37$ AU, and the 4 detections at $a>250, q>30$ AU, have $Omega$ distribution with $p=0.03$ of coming from the isotropic construction, but this is not strong evidence of anisotropy given the 12 different tests. The DES data taken on their own are thus consistent with azimuthal isotropy and do not require a Planet 9 hypothesis. The limited sky coverage and object count mean, however, that the DES data by no means falsify this hypothesis.
Transneptunian objects (TNOs) are a source of invaluable information to access the history and evolution of the outer solar system. However, observing these faint objects is a difficult task. As a consequence, important properties such as size and al bedo are known for only a small fraction of them. Now, with the results from deep sky surveys and the Gaia space mission, a new exciting era is within reach as accurate predictions of stellar occultations by numerous distant small solar system bodies become available. From them, diameters with kilometer accuracies can be determined. Albedos, in turn, can be obtained from diameters and absolute magnitudes. We use observations from the Dark Energy Survey (DES) from November 2012 until February 2016, amounting to 4292847 CCD frames. We searched them for all known small solar system bodies and recovered a total of 202 TNOs and Centaurs, 63 of which have been discovered by the DES collaboration until the date of this writing. Their positions were determined using the Gaia Data Release 2 as reference and their orbits were refined. Stellar occultations were then predicted using these refined orbits plus stellar positions from Gaia. These predictions are maintained, and updated, in a dedicated web service. The techniques developed here are also part of an ambitious preparation to use the data from the Large Synoptic Survey Telescope (LSST), that expects to obtain accurate positions and multifilter photometry for tens of thousands of TNOs.
We present the results of a search for outer Solar System objects in the full six years of data (Y6) from the Dark Energy Survey (DES). The DES covered a contiguous $5000$ deg$^2$ of the southern sky with $approx 80,000$ $3$ deg$^2$ exposures in the $grizY$ optical/IR filters between 2013 and 2019. This search yielded 815 trans-Neptunian objects (TNOs), one Centaur and one Oort cloud comet, with 461 objects reported for the first time in this paper. We present methodology that builds upon our previous search carried out on the first four years of data. Here, all DES images were reprocessed with an improved detection pipeline that leads to an average completeness gain of 0.47 mag per exposure, as well as an improved transient catalog production and optimized algorithms for linkage of detections into orbits. All objects were verified by visual inspection and by computing the sub-threshold significance, the total signal-to-noise ratio in the stack of images in which the objects presence is indicated by the orbit fit, but no detection was reported. This yields a highly pure catalog of TNOs complete to $r approx 23.8$ mag and distances $29<d<2500$ au. The Y6 TNOs have minimum (median) of 7 (12) distinct nights detections and arcs of 1.1 (4.2) years, and will have $grizY$ magnitudes available in a further publication. We present software for simulating our observational biases that enable comparisons of population models to our detections. Initial inferences demonstrating the statistical power of the DES catalog are: the data are inconsistent with the CFEPS-L7 model for the classical Kuiper Belt; the 16 ``extreme TNOs ($a>150$ au, $q>30$ au) are consistent with the null hypothesis of azimuthal isotropy; and non-resonant TNOs with $q>38$ au, $a>50$ au show a highly significant tendency to be sunward of the major mean motion resonances, whereas this tendency is not present for $q<38$ au.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا