ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of the Cut Locus and a Central Limit Theorem for Frechet Means of Riemannian Manifolds

175   0   0.0 ( 0 )
 نشر من قبل Fernando Galaz-Garcia
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain a Central Limit Theorem for closed Riemannian manifolds, clarifying along the way the geometric meaning of some of the hypotheses in Bhattacharya and Lins Omnibus Central Limit Theorem for Frechet means. We obtain our CLT assuming certain stability hypothesis for the cut locus, which always holds when the manifold is compact but may not be satisfied in the non-compact case.



قيم البحث

اقرأ أيضاً

203 - Marc Arnaudon 2011
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. Firstly, the existence and uniqueness results of local medians are given. In order to compute medians in practical cases, we pr opose a subgradient algorithm and prove its convergence. After that, Frechet medians are considered. We prove their statistical consistency and give some quantitative estimations of their robustness with the aid of upper curvature bounds. We also show that, in compact Riemannian manifolds, the Frechet medians of generic data points are always unique. Stochastic and deterministic algorithms are proposed for computing Riemannian p-means. The rate of convergence and error estimates of these algorithms are also obtained. Finally, we apply the medians and the Riemannian geometry of Toeplitz covariance matrices to radar target detection.
129 - S.Ekisheva , C. Houdre 2006
For probability measures on a complete separable metric space, we present sufficient conditions for the existence of a solution to the Kantorovich transportation problem. We also obtain sufficient conditions (which sometimes also become necessary) fo r the convergence, in transportation, of probability measures when the cost function is continuous, non-decreasing and depends on the distance. As an application, the CLT in the transportation distance is proved for independent and some dependent stationary sequences.
For $1 le p < infty$, the Frechet $p$-mean of a probability distribution $mu$ on a metric space $(X,d)$ is the set $F_p(mu) := {arg,min}_{xin X}int_{X}d^p(x,y), dmu(y)$, which is taken to be empty if no minimizer exists. Given a sequence $(Y_i)_{i in mathbb{N}}$ of independent, identically distributed random samples from some probability measure $mu$ on $X$, the Frechet $p$-means of the empirical measures, $F_p(frac{1}{n}sum_{i=1}^{n}delta_{Y_i})$ form a sequence of random closed subsets of $X$. We investigate the senses in which this sequence of random closed sets and related objects converge almost surely as $n to infty$.
Given ${X_k}$ is a martingale difference sequence. And given another ${Y_k}$ which has dependency within the sequence. Assume ${X_k}$ is independent with ${Y_k}$, we study the properties of the sums of product of two sequences $sum_{k=1}^{n} X_k Y_k$ . We obtain product-CLT, a modification of classical central limit theorem, which can be useful in the study of random projections. We also obtain the rate of convergence which is similar to the Berry-Essen theorem in the classical CLT.
201 - Shige Peng 2008
We describe a new framework of a sublinear expectation space and the related notions and results of distributions, independence. A new notion of G-distributions is introduced which generalizes our G-normal-distribution in the sense that mean-uncertai nty can be also described. W present our new result of central limit theorem under sublinear expectation. This theorem can be also regarded as a generalization of the law of large number in the case of mean-uncertainty.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا