ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal boundary resistance predictions with non-equilibrium Greens function and molecular dynamics simulations

309   0   0.0 ( 0 )
 نشر من قبل Yuanchen Chu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The non-equilibrium Greens function (NEGF) method with Buttiker probe scattering self-energies is assessed by comparing its predictions for the thermal boundary resistance with molecular dynamics (MD) simulations. For simplicity, the interface of Si/heavy-Si is considered, where heavy-Si differs from Si only in the mass value. With Buttiker probe scattering parameters tuned against MD in homogeneous Si, the NEGF-predicted thermal boundary resistance quantitatively agrees with MD for wide mass ratios. Artificial resistances that the unaltered Landauer approach yield at virtual interfaces in homogeneous systems are absent in the present NEGF approach. Spectral information result from NEGF in its natural representation without further transformations. The spectral results show that the scattering between different phonon modes plays a crucial role in thermal transport across interfaces. Buttiker probes provide an efficient and reliable way to include anharmonicity in phonon related NEGF. NEGF including the Buttiker probes can reliably predict phonon transport across interfaces and at finite temperatures.



قيم البحث

اقرأ أيضاً

The present study addresses the role of molecular non-equilibrium effects in thermal ignition problems. We consider a single binary reaction of the form A+B -> C+C. Molecular dynamics calculations were performed for activation energies ranging betwee n RT and 7.5RT and heat release of 2.5RT and 10RT. The evolution of up to 10,000 particles was calculated as the system undergoes a thermal ignition at constant volume. Ensemble averages of 100 calculations for each parameter set permitted to determine the ignition delay, along with a measure of the stochasticity of the process. A well behaved convergence to large system sizes is also demonstrated. The ignition delay calculations were compared with those obtained at the continuum level using rates derived from kinetic theory: the standard rate assuming that the distribution of the speed of the particles is the Maxwell-Boltzmann distribution, and the perturbed rates by Prigogine and Xhrouet [1] for an isothermal system, and Prigogine and Mahieu [2] for an energy releasing reaction, obtained by the Chapman-Enskog perturbation procedure. The molecular results were found in very good agreement with the latter at low temperatures, confirming that non-equilibrium effects promote the formation of energetic particles, that serve as seeds for subsequent reaction events: i.e., hot spots. This effect was found to lower the ignition delay by up to 30%. At high temperatures, the ignition delay obtained from the standard equilibrium rate was found to be up to 60% longer than the molecular calculations. This effect is due to the rapidity of the reactive collisions that do not allow the system to equilibrate. For this regime, none of the perturbation solutions obtained by the Chapman-Enskog procedure were valid. This study thus shows the importance of non-equilibrium effects in thermal ignition problems, for most temperatures of practical interest.
95 - M. Franckie , L. Bosco , M. Beck 2017
We present a two-quantum well THz intersubband laser operating up to 192 K. The structure has been optimized with a non-equilibrium Greens function model. The result of this optimization was confirmed experimentally by growing, processing and measuri ng a number of proposed designs. At high temperature (T>200 K), the simulations indicate that lasing fails due to a combination of electron-electron scattering, thermal backfilling, and, most importantly, re-absorption coming from broadened states.
Nanofluids are known to have significantly different thermal properties relative to the corresponding conventional fluids. Heat transfer at the solid-fluid interface affects the thermal properties of nanofluids. The current work helps in understandin g the role of two nanoscale phenomena, namely ordering of fluid layer around the nanoparticle (nanolayer) and thermal resistance at the interface of solid-fluid in the enhancement of thermal conductivity of Al2O3 - CO2 nanofluid. In this study, molecular dynamics (MD) simulations have been used to study the thermal interfacial resistance by transient non-equilibrium heat technique and nanolayer formed between Al2O3 nanoparticle (np) and surrounded CO2 molecules in the gaseous and supercritical phase. The nanoparticle diameter (dNP) is varied between 2 and 5 nm to investigate the size effect on thermal interfacial resistance (TIR) and thermal conductivity of nanofluid and the results indicate that the TIR for larger diameters is relatively high in both the phases. The study of the effect of surface wettability and temperature on TIR reveals that the resistance decreases with increase in interaction strength and temperature, but is entirely independent at higher temperatures, in both gaseous and supercritical nanofluid. A density distribution study of the nanolayer and the monolayer around the nanoparticle revealed that the latter is more ordered in smaller diameter with less thermal resistance. However, nanolayer study reveals that the nanoparticle with bigger diameters are more suitable for the cooling/heating purpose, as the system with larger diameters has higher thermal conductivity. Results show that the nanolayer plays a significant role in determining the effective thermal conductivity of the nanofluid, while the influence of TIR appears negligible compared to the nanolayer.
Equilibrium molecular dynamics simulations are used to calculate the thermal conductivity of the one component plasma (OCP) via the Green-Kubo formalism over a broad range of Coulomb coupling strength, $0.1leGammale180$. These simulations address pre vious discrepancies between computations using equilibrium versus nonequilibrium methods. Analysis of heat flux autocorrelation functions show that very long ($6times10^5omega_p^{-1}$) time series are needed to reduce the noise level to allow $lesssim2%$ accuracy. The new simulations provide the first accurate data for $Gamma lesssim 1$. This enables a test of the traditional Landau-Spitzer theory, which is found to agree with the simulations for $Gamma lesssim 0.3$. It also enables tests of theories to address moderate and strong Coulomb coupling. Two are found to provide accurate extensions to the moderate coupling regime of $Gamma lesssim 10$, but none are accurate in the $Gamma gtrsim 10$ regime where potential energy transport and coupling between mass flow and stress dominate thermal conduction.
High-doping induced Urbach tails and band gap narrowing play a significant role in determining the performance of tunneling devices and optoelectronic devices such as tunnel field-effect transistors (TFETs), Esaki diodes and light-emitting diodes. In this work, Urbach tails and band gap narrowing values are calculated explicitly for GaAs, InAs, GaSb and GaN as well as ultra-thin bodies and nanowires of the same. Electrons are solved in the non-equilibrium Greens function method in multi-band atomistic tight binding. Scattering on polar optical phonons and charged impurities is solved in the self-consistent Born approximation. The corresponding nonlocal scattering self-energies as well as their numerically efficient formulations are introduced for ultra-thin bodies and nanowires. Predicted Urbach band tails and conduction band gap narrowing agree well with experimental literature for a range of temperatures and doping concentrations. Polynomial fits of the Urbach tail and band gap narrowing as a function of doping are tabulated for quick reference.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا