ترغب بنشر مسار تعليمي؟ اضغط هنا

Solid-state Mamyshev oscillator

277   0   0.0 ( 0 )
 نشر من قبل Mingming Nie
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first design and analysis of a solid-state Mamyshev oscillator. We utilize the phase-mismatched cascaded quadratic nonlinear process in periodically poled lithium niobite waveguide to generate substantial spectral broadening for Mamyshev modelocking. The extensive spectral broadening bridges the two narrowband gain media in the two arms of the same cavity, leading to a broadband mode-locking not attainable with either gain medium alone. Two pulses are coupled out of the cavity and each of the output pulses carries a pulse energy of 25.3 nJ at a repetition rate of 100 MHz. The 10-dB bandwidth of 2.1 THz supports a transform limited pulse duration of 322 fs, more than 5 times shorter than what can be achieved with either gain medium alone. Finally, effects of group velocity mismatch, group velocity dispersion, and nonlinear saturation on the performance of Mamyshev mode-locking are numerically discussed in detail.

قيم البحث

اقرأ أيضاً

We demonstrate a fiber source with the best performance from an ultrafast fiber oscillator to date. The ring-cavity Mamyshev oscillator produces 50-nJ and 40-fs pulses. The peak power is an order of magnitude higher than that of previous lasers with similar fiber mode area. This performance is achieved by designing the oscillator to support parabolic pulse formation which enables the management of unprecedented nonlinear phase shifts. Experimental results are limited by available pump power. Numerical simulations reveal key aspects of the pulse evolution, and realistically suggest that (after external compression) peak powers that approach 10 MW are possible from ordinary single-mode fiber. The combination of practical features such as environmental stability, established previously, with the performance described here make the Mamyshev oscillator extremely attractive for applications.
While the performance of mode-locked fiber lasers has been improved significantly, the limited gain bandwidth restricts them to generate ultrashort pulses approaching a few cycles or even shorter. Here we present a novel method to achieve few cycle p ulses (~5 cycles) with ultra-broad spectrum (~400 nm). To our best knowledge, this is the shortest pulse width and broadest spectrum directly generated from fiber lasers. It is noteworthy that a dramatic ultrashort pulse evolution can be stabilized in a laser oscillator by the unique nonlinear processes of a self-similar evolution as a nonlinear attractor in the gain fiber and a perfect saturable absorber action of the Mamyshev oscillator.
Mode-locked fiber lasers provide a versatile playground to study dissipative soliton (DS) dynamics. The corresponding studies not only give insights into soliton dynamics in dissipative systems, but also contribute to femtosecond fiber laser design. Recently, Mamyshev oscillators (MOs), which rely upon a pair of narrow filters with offset passing frequencies, have emerged as a promising candidate for high power, ultrabroad bandwidth pulse generation. To date, only stable mode-locking states in MOs have been reported. Here, we present a comprehensive experimental and numerical investigation of pulsating DSs in an ytterbium MO. By reducing the filter separation down to 4 nm, we observe pulsation in a single pulse state as well as a soliton molecule state. In the single pulse state, the output pulse energy can vary as large as 40 times in our MO. Single-shot spectra measured by the dispersive Fourier transform (DFT) method reveal the spectral bandwidth breathing during pulsation and enables the observation of soliton explosion in a pulsation state. In addition, pulsation with a period lasting 9 round trips and even a chaotic pulsation state are also observed. Numerical simulations based on a lumped model qualitatively agree with our observation. Our results enrich DS dynamics in MOs and show the impact of filter separation on the stability of MOs.
Laser brightness is a measure of the ability to de- liver intense light to a target, and encapsulates both the energy content and the beam quality. High brightness lasers requires that both parameters be maximised, yet standard laser cavities do not allow this. For example, in solid-state lasers multimode beams have a high energy content but low beam quality, while Gaussian modes have a small mode volume and hence low energy extraction, but in a good quality mode. Here we over- come this fundamental limitation and demonstrate an optimal approach to realising high brightness lasers. We employ intra- cavity beam shaping to produce a Gaussian mode that carries all the energy of the multimode beam, thus energy extraction and beam quality are simultaneously maximised. This work will have a significant influence on the design of future high brightness laser cavities.
109 - Zhuang Zhao 2015
High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated wit h various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا