ﻻ يوجد ملخص باللغة العربية
While design of high performance lenses and image sensors has long been the focus of camera development, the size, weight and power of image data processing components is currently the primary barrier to radical improvements in camera resolution. Here we show that Deep-Learning- Aided Compressive Sampling (DLACS) can reduce operating power on camera-head electronics by 20x. Traditional compressive sampling has to date been primarily applied in the physical sensor layer, we show here that with aid from deep learning algorithms, compressive sampling offers unique power management advantages in digital layer compression.
Mid-wave infrared (MWIR) cameras for large number pixels are extremely expensive compared with their counterparts in visible light, thus, super-resolution imaging (SRI) for MWIR by increasing imaging pixels has always been a research hotspot in recen
We review camera architecture in the age of artificial intelligence. Modern cameras use physical components and software to capture, compress and display image data. Over the past 5 years, deep learning solutions have become superior to traditional a
Compressive lensless imagers enable novel applications in an extremely compact device, requiring only a phase or amplitude mask placed close to the sensor. They have been demonstrated for 2D and 3D microscopy, single-shot video, and single-shot hyper
Conventional approaches of sampling signals follow the celebrated theorem of Nyquist and Shannon. Compressive sampling, introduced by Donoho, Romberg and Tao, is a new paradigm that goes against the conventional methods in data acquisition and provid
Some pioneering works have investigated embedding cryptographic properties in compressive sampling (CS) in a way similar to one-time pad symmetric cipher. This paper tackles the problem of constructing a CS-based symmetric cipher under the key reuse