ترغب بنشر مسار تعليمي؟ اضغط هنا

Interacting hadron resonance gas model in magnetic field and the fluctuations of conserved charges

148   0   0.0 ( 0 )
 نشر من قبل Guruprasad Kadam Dr.
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we discuss the interacting hadron resonance gas model in presence of a constant external magnetic field. The short range repulsive interaction between hadrons are accounted through van der Waals excluded volume correction to the ideal gas pressure. Here we take the sizes of hadrons as $r_pi$ (pion radius) $= 0$ fm, $r_K$ (kaon radius) $= 0.35$ fm, $r_m$ (all other meson radii) $= 0.3$ fm and $r_b$ (baryon radii) $= 0.5$ fm. We analyse the effect of uniform background magnetic field on the thermodynamic properties of interacting hadron gas. We especially discuss the effect of interactions on the behaviour of magnetization of low temperature hadronic matter. The vacuum terms have been regularized using magnetic field independent regularization scheme. We find that the magnetization of hadronic matter is positive which implies that the low temperature hadronic matter is paramagnetic. We further find that the repulsive interactions have very negligible effect on the overall magnetization of the hadronic matter and the paramagnetic property of the hadronic phase remains unchanged. We have also investigated the effects of short range repulsive interactions as well as the magnetic field on the baryon and electric charge number susceptibilities of hadronic matter within the ambit of excluded volume hadron resonance gas model.



قيم البحث

اقرأ أيضاً

We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge and net-strangeness fluctuations in high energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of incl uding weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find a good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
The Hadron-Resonance Gas (HRG) approach - used to model hadronic matter at small baryon potentials $mu_B$ and finite temperature $T$ - is extended to finite and large chemical potentials by introducing interactions between baryons in line with relati vistic mean-field theory defining an interacting HRG (IHRG). Using lattice data for $mu_B=0$ as well as information on the nuclear equation of state at $T=0$ we constrain the attractive and repulsive interactions of the IHRG such that it reproduces the lattice equation of state at $mu_B=0$ and the nuclear equation of state at $T=0$ and finite $mu_B$. The formulated covariant approach is thermodynamically consistent and allows us to provide further information on the phase boundary between hadronic and partonic phases of strongly interacting matter by assuming constant thermodynamic potentials.
We investigate the effects of repulsive interaction between hadrons on the fluctuations of the conserved charges. We calculate the baryon,the electric charge and the strangeness susceptibilities within the ambit of hadron resonance gas model extended to include the short range repulsive interactions.The repulsive interactions are included through a mean-field approach where the single particle energy gets modified due to mean field interactions between hadrons proportional to the number density of hadrons.We assume different mean-field interactions for mesons and baryons. It is shown that the repulsive interactions play a very crucial role to describe hadronic matter near transition temperature. We also show that in order to consistently describe higher order conserved charge fluctuations mesonic repulsive interactions cannot be neglected. Further, we demonstrate that the repulsive interaction of baryons are essential to describe the lattice simulation results at finite baryonchemical potential for higher order fluctuations.
We simultaneously incorporate two common extensions of the hadron resonance gas model, namely the addition of extra, unconfirmed resonances to the particle list and the excluded volume repulsive interactions. We emphasize the complementary nature of these two extensions and identify combinations of conserved charge susceptibilities that allow to constrain them separately. In particular, ratios of second-order susceptibilities like $chi_{11}^{BQ}/chi_2^B$ and $chi_{11}^{BS}/chi_2^B$ are sensitive only to the baryon spectrum, while fourth-to-second order ratios like $chi_4^B/chi_2^B$, $chi_{31}^{BS}/chi_{11}^{BS}$, or $chi_{31}^{BQ}/chi_{11}^{BQ}$ are mainly determined by repulsive interactions. Analysis of the available lattice results suggests the presence of both the extra states in the baryon-strangeness sector and the repulsive baryonic interaction, with indications that hyperons have a smaller repulsive core than non-strange baryons. The modified hadron resonance gas model presented here significantly improves the description of lattice QCD susceptibilities at chemical freeze-out and can be used for the analysis of event-by-event fluctuations in heavy-ion collisions.
In this work we discuss a modified version of Excluded Volume Hadron Resonance Gas model and also study the effect of Lorentz contraction of the excluded volume on scaled pressure and susceptibilities of conserved charges. We find that the Lorentz co ntraction, coupled with the variety of excluded volume parameters reproduce the lattice QCD data quite satisfactorily.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا