ﻻ يوجد ملخص باللغة العربية
In Part I of this paper series, several macroscopic traffic model elements for mathematically describing freeway networks equipped with managed lane facilities were proposed. These modeling techniques seek to capture at the macroscopic the complex phenomena that occur on managed lane-freeway networks, where two parallel traffic flows interact with each other both in the physical sense (how and where cars flow between the two lane groups) and the physiological sense (how driving behaviors are changed by being adjacent to a quantitatively and qualitatively different traffic flow). The local descriptions we developed in Part I are not the only modeling complexity introduced in managed lane-freeway networks. The complex topologies mean that network-scale modeling of a freeway corridor is increased in complexity as well. The already-difficult model calibration problem for a dynamic model of a freeway becomes more complex when the freeway becomes, in effect, two interrelating flow streams. In the present paper, we present an iterative-learning-based approach to calibrating our models physical and driver-behavioral parameters. We consider the common situation where a complex traffic model needs to be calibrated to recreate real-world baseline traffic behavior, such that counterfactuals can be generated by training purposes. Our method is used to identify traditional freeway parameters as well as the proposed parameters that describe managed lane-freeway-network-specific behaviors. We validate our model and calibration methodology with case studies of simulations of two managed lane-equipped California freeways.
This study demonstrates the implementation of the stochastic ruler discrete simulation optimization method for calibrating an agent-based model (ABM) developed to simulate hepatitis C virus (HCV) transmission. The ABM simulates HCV transmission betwe
This paper presents a network hardware-in-the-loop (HIL) simulation system for modeling large-scale power systems. Researchers have developed many HIL test systems for power systems in recent years. Those test systems can model both microsecond-level
The vulnerability of artificial intelligence (AI) and machine learning (ML) against adversarial disturbances and attacks significantly restricts their applicability in safety-critical systems including cyber-physical systems (CPS) equipped with neura
In this paper, we shed new light on a classical scheduling problem: given a slot-timed, constant-capacity server, what short-run scheduling decisions must be made to provide long-run service guarantees to competing flows of unit-sized tasks? We model
Originally, the decision and control of the lane change of the vehicle were on the human driver. In previous studies, the decision-making of lane-changing of the human drivers was mainly used to increase the individuals benefit. However, the lane-cha