ﻻ يوجد ملخص باللغة العربية
The mechanical response of packings of purely repulsive, spherical particles to athermal, quasistatic simple shear near jamming onset is highly nonlinear. Previous studies have shown that, at small pressure $p$, the ensemble-averaged static shear modulus $langle G-G_0 rangle$ scales with $p^alpha$, where $alpha approx 1$, but above a characteristic pressure $p^{**}$, $langle G-G_0 rangle sim p^beta$, where $beta approx 0.5$. However, we find that the shear modulus $G^i$ for an individual packing typically decreases linearly with $p$ along a geometrical family where the contact network does not change. We resolve this discrepancy by showing that, while the shear modulus does decrease linearly within geometrical families, $langle G rangle$ also depends on a contribution from discontinuous jumps in $langle G rangle$ that occur at the transitions between geometrical families. For $p > p^{**}$, geometrical-family and rearrangement contributions to $langle G rangle$ are of opposite signs and remain comparable for all system sizes. $langle G rangle$ can be described by a scaling function that smoothly transitions between the two power-law exponents $alpha$ and $beta$. We also demonstrate the phenomenon of {it compression unjamming}, where a jammed packing can unjam via isotropic compression.
We focus on the response of mechanically stable (MS) packings of frictionless, bidisperse disks to thermal fluctuations, with the aim of quantifying how nonlinearities affect system properties at finite temperature. Packings of disks with purely repu
We perform computational studies of repulsive, frictionless disks to investigate the development of stress anisotropy in mechanically stable (MS) packings. We focus on two protocols for generating MS packings: 1) isotropic compression and 2) applied
We compare the structural and mechanical properties of mechanically stable (MS) packings of frictional disks in two spatial dimensions (2D) generated with isotropic compression and simple shear protocols from discrete element modeling (DEM) simulatio
We investigate the mechanical response of jammed packings of circulo-lines, interacting via purely repulsive, linear spring forces, as a function of pressure $P$ during athermal, quasistatic isotropic compression. Prior work has shown that the ensemb
We compare the elastic response of spring networks whose contact geometry is derived from real packings of frictionless discs, to networks obtained by randomly cutting bonds in a highly connected network derived from a well-compressed packing. We fin