ﻻ يوجد ملخص باللغة العربية
Efficiency and multisimultaneous-frequency (MSF) output capability are two major criteria characterizing the performance of a power amplifier in the application of multifrequency eddy current testing (MECT). Switch-mode power amplifiers are known to have a very high efficiency, yet they have rarely been adopted in the instrumental development of MECT. In addition, switch-mode power amplifiers themselves are lacking in the research literature for MSF capability. In this article, a Class D power amplifier is designed so as to address the two issues. An MSF selective harmonic elimination pulsewidth modulation method is proposed to generate alternating magnetic fields, which are rich in selected harmonics. A field-programmable-gate-array-based experimental system has been developed to verify the design. Results show that the proposed methodology is capable of generating high MSF currents in the transmitting coil with a low distortion of signal.
Location of non-stationary forced oscillation (FO) sources can be a challenging task, especially in cases under resonance condition with natural system modes, where the magnitudes of the oscillations could be greater in places far from the source. Th
The need for Enhanced Frequency Response (EFR) is expected to increase significantly in future low-carbon Great Britain (GB) power system. One way to provide EFR is to use power electronic compensators (PECs) for point-of-load voltage control (PVC) t
This article describes the design methodology to achieve reflective diode-based parametric frequency selective limiters (pFSLs) with low power thresholds ($P_{th}$) and sub-dB insertion-loss values ($IL^{s.s}$) for driving power levels ($P_{in}$) low
This paper discusses a novel fault location approach using single ended measurement. The natural dissipation of the circuit parameters are considered for fault location. A relationship between the damped natural frequency of oscillation of the transm
Atmospheric propagation effects at millimeter wavelengths can significantly alter the phases of radio signals and reduce the coherence time, putting tight constraints on high frequency Very Long Baseline Interferometry (VLBI) observations. In previou