ﻻ يوجد ملخص باللغة العربية
Single-walled carbon nanotubes (SWCNT) can be assembled into various macroscopic architectures, most notably continuous fibers and films, produced currently on a kilometer per day scale by floating catalyst chemical vapor depositionand spinning from an aerogel of CNTs. An attractive challenge is to produce continuous fibers with controlled molecular structure with respect to the diameter, chiral angle and ultimately(n,m)indices of the constituent SWCNT molecules. This work presents an extensive Raman spectroscopy and high resolution transmission electron microscopy study of SWCNT aerogels produced by the direct spinning method. By retaining the open structure of the SWCNT aerogel, we reveal the presence of both semiconducting and metallic SWCNTs and determine a full distribution of families of SWCNT grouped by optical transitions. The resulting distribution matches the chiral angle distribution obtained by electron microscopy and electron diffraction. The effect of SWCNT bundling on the Raman spectra, such as the G line shape due to plasmons activated in the far-infrared and semiconductor quenching, are also discussed. By avoiding full aggregation of the aerogel and applying the methodology introduced, rapid screening of molecular features can be achieved in large samples, making this protocol a useful analysis tool for engineered SWCNT fibers and related systems.
The controlled functionalization of single-walled carbon nanotubes with luminescent sp3-defects has created the potential to employ them as quantum-light sources in the near-infrared. For that, it is crucial to control their spectral diversity. The e
Carbon Nanotubes (CNTs) of sufficiently large diameter and a few layers self-collapse into flat ribbons at atmospheric pressure, forming bundles of stacked CNTs that maximize packing and thus CNT interaction. Their improved stress transfer by shear m
We report a measurement on quantum capacitance of individual semiconducting and small band gap SWNTs. The observed quantum capacitance is remarkably smaller than that originating from density of states and it implies a strong electron correlation in SWNTs.
Photoluminescence (PL) has become a common tool to characterize various properties of single-walled carbon nanotube (SWCNT) chirality distribution and the level of tube individualization in SWCNT samples. Most PL studies employ conventional lamp ligh
We present results of wavelength-dependent ultrafast pump-probe experiments on micelle-suspended single-walled carbon nanotubes. The linear absorption and photoluminescence spectra of the samples show a number of chirality-dependent peaks, and conseq