ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetary systems in a star cluster I: the Solar system scenario

116   0   0.0 ( 0 )
 نشر من قبل Francesco Flammini Dotti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Young stars are mostly found in dense stellar environments, and even our own Solar system may have formed in a star cluster. Here, we numerically explore the evolution of planetary systems similar to our own Solar system in star clusters. We investigate the evolution of planetary systems in star clusters. Most stellar encounters are tidal, hyperbolic, and adiabatic. A small fraction of the planetary systems escape from the star cluster within 50 Myr; those with low escape speeds often remain intact during and after the escape process. While most planetary systems inside the star cluster remain intact, a subset is strongly perturbed during the first 50 Myr. Over the course of time, 0.3 % - 5.3 % of the planets escape, sometimes up to tens of millions of years after a stellar encounter occurred. Survival rates are highest for Jupiter, while Uranus and Neptune have the highest escape rates. Unless directly affected by a stellar encounter itself, Jupiter frequently serves as a barrier that protects the terrestrial planets from perturbations in the outer planetary system. In low-density environments, Jupiter provides protection from perturbations in the outer planetary system, while in high-density environments, direct perturbations of Jupiter by neighbouring stars is disruptive to habitable-zone planets. The diversity amongst planetary systems that is present in the star clusters at 50 Myr, and amongst the escaping planetary systems, is high, which contributes to explaining the high diversity of observed exoplanet systems in star clusters and in the Galactic field



قيم البحث

اقرأ أيضاً

Most stars form in dense stellar environments. It is speculated that some dense star clusters may host intermediate-mass black holes (IMBHs), which may have formed from runaway collisions between high-mass stars, or from the mergers of less massive b lack holes. Here, we numerically explore the evolution of populations of planets in star clusters with an IMBH. We study the dynamical evolution of single-planet systems and free-floating planets, over a period of 100~Myr, in star clusters without an IMBH, and in clusters with a central IMBH of mass $100~M_odot$ or $200~M_odot$. In the central region ($rlesssim 0.2$~pc), the IMBHs tidal influence on planetary systems is typically 10~times stronger than the average neighbour star. For a star cluster with a $200M_odot$ IMBH, the region in which the IMBHs influence is stronger within the virial radius ($sim 1$~pc). The IMBH quenches mass segregation, and the stars in the core tend to move towards intermediate regions. The ejection rate of both stars and planets is higher when an IMBH is present. The rate at which planets are expelled from their host star rate is higher for clusters with higher IMBH masses, for $t<0.5 t_{rh}$, while remains mostly constant while the star cluster fills its Roche lobe, similar to a star cluster without an IMBH. The disruption rate of planetary systems is higher in initially denser clusters, and for wider planetary orbits, but this rate is substantially enhanced by the presence of a central IMBH.
Geochemical and astronomical evidence demonstrate that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar prot oplanetary disk influenced the timing of protoplanet formation and their internal evolution. Migration of the water snow line can generate two distinct bursts of planetesimal formation that sample different source regions. These reservoirs evolve in divergent geophysical modes and develop distinct volatile contents, consistent with constraints from accretion chronology, thermo-chemistry, and the mass divergence of inner and outer Solar System. Our simulations suggest that the compositional fractionation and isotopic dichotomy of the Solar System was initiated by the interplay between disk dynamics, heterogeneous accretion, and internal evolution of forming protoplanets.
The Solar system was once rich in the short-lived radionuclide (SLR) $^{26}$Al, but deprived in $^{60}$Fe. Several models have been proposed to explain these anomalous abundances in SLRs, but none has been set within a self-consistent framework of th e evolution of the Solar system and its birth environment. The anomalous abundance in $^{26}$Al may have originated from the accreted material in the wind of a massive $apgt 20$,$M_odot$ Wolf-Rayet star, but the star could also have been a member of the parental star-cluster instead of an interloper or an older generation that enriched the proto-solar nebula. The protoplanetary disk at that time was already truncated around the Kuiper-cliff (at $45$ au) by encounters with another cluster members before it was enriched by the wind of the nearby Wolf-Rayet star. The supernova explosion of a nearby star, possibly but not necessarily the exploding Wolf-Rayet star, heated the disk to $apgt 1500$K, melting small dust grains and causing the encapsulation and preservation of $^{26}$Al into vitreous droplets. This supernova, and possibly several others, caused a further abrasion of the disk and led to its observed tilt of $5.6pm1.2^circ$ with respect to the Suns equatorial plane. The abundance of $^{60}$Fe originates from a supernova shell, but its preservation results from a subsequent supernova. At least two supernovae are needed (one to deliver $^{60}$Fe, and one to preserve it in the disk) to explain the observed characteristics of the Solar system. The most probable birth cluster then has $N = 2500pm300$ stars and a radius of $r_{rm vir} = 0.75pm0.25$ pc. We conclude that Solar systems equivalent systems form in the Milky Way Galaxy at a rate of about 30 per Myr, in which case approximately 36,000 Solar system analogues roam the Milky Way.
The population of exoplanetary systems detected by Kepler provides opportunities to refine our understanding of planet formation. Unraveling the conditions needed to produce the observed exoplanets will sallow us to make informed predictions as to wh ere habitable worlds exist within the galaxy. In this paper, we examine using N-body simulations how the properties of planetary systems are determined during the final stages of assembly. While accretion is a chaotic process, trends in the ensemble properties of planetary systems provide a memory of the initial distribution of solid mass around a star prior to accretion. We also use EPOS, the Exoplanet Population Observation Simulator, to account for detection biases and show that different accretion scenarios can be distinguished from observations of the Kepler systems. We show that the period of the innermost planet, the ratio of orbital periods of adjacent planets, and masses of the planets are determined by the total mass and radial distribution of embryos and planetesimals at the beginning of accretion. In general, some amount of orbital damping, either via planetesimals or gas, during accretion is needed to match the whole population of exoplanets. Surprisingly, all simulated planetary systems have planets that are similar in size, showing that the peas in a pod pattern can be consistent with both a giant impact scenario and a planet migration scenario. The inclusion of material at distances larger than what Kepler observes has a profound impact on the observed planetary architectures, and thus on the formation and delivery of volatiles to possible habitable worlds.
The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate onto the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا