ترغب بنشر مسار تعليمي؟ اضغط هنا

Materials Structure, Properties and Dynamics through Scanning Transmission Electron Microscopy

108   0   0.0 ( 0 )
 نشر من قبل Maria Varela
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scanning transmission electron microscopy (STEM) has advanced rapidly in the last decade thanks to the ability to correct the major aberrations of the probe forming lens. Now atomic-sized beams are routine, even at accelerating voltages as low as 40 kV, allowing knock-on damage to be minimized in beam sensitive materials. The aberration-corrected probes can contain sufficient current for high quality, simultaneous, imaging and analysis in multiple modes. Atomic positions can be mapped with picometer precision, revealing ferroelectric domain structures, composition can be mapped by energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS) and charge transfer can be tracked unit cell by unit cell using the EELS fine structure. Furthermore, dynamics of point defects can be investigated through rapid acquisition of multiple image scans. Today STEM has become an indispensable tool for analytical science at the atomic level, providing a whole new level of insights into the complex interplays that control materials properties.



قيم البحث

اقرأ أيضاً

206 - Steven R. Spurgeon 2020
Thin film oxides are a source of endless fascination for the materials scientist. These materials are highly flexible, can be integrated into almost limitless combinations, and exhibit many useful functionalities for device applications. While precis ion synthesis techniques, such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD), provide a high degree of control over these systems, there remains a disconnect between ideal and realized materials. Because thin films adopt structures and chemistries distinct from their bulk counterparts, it is often difficult to predict what properties will emerge. The complex energy landscape of the synthesis process is also strongly influenced by non-equilibrium growth conditions imposed by the substrate, as well as the kinetics of thin film crystallization and fluctuations in process variables, all of which can lead to significant deviations from targeted outcomes. High-resolution structural and chemical characterization techniques, as described in this volume, are needed to verify growth models, bound theoretical calculations, and guide materials design. While many characterization options exist, most are spatially-averaged or indirect, providing only partial insight into the complex behavior of these systems. Over the past several decades, scanning transmission electron microscopy (STEM) has become a cornerstone of oxide heterostructure characterization owing to its ability to simultaneously resolve structure, chemistry, and defects at the highest spatial resolution. STEM methods are an essential complement to averaged scattering techniques, offering a direct picture of resulting materials that can inform and refine the growth process to achieve targeted properties. There is arguably no other technique that can provide such a broad array of information at the atomic-scale, all within a single experimental session.
Scanning transmission electron microscopy (STEM) is now the primary tool for exploring functional materials on the atomic level. Often, features of interest are highly localized in specific regions in the material, such as ferroelectric domain walls, extended defects, or second phase inclusions. Selecting regions to image for structural and chemical discovery via atomically resolved imaging has traditionally proceeded via human operators making semi-informed judgements on sampling locations and parameters. Recent efforts at automation for structural and physical discovery have pointed towards the use of active learning methods that utilize Bayesian optimization with surrogate models to quickly find relevant regions of interest. Yet despite the potential importance of this direction, there is a general lack of certainty in selecting relevant control algorithms and how to balance a priori knowledge of the material system with knowledge derived during experimentation. Here we address this gap by developing the automated experiment workflows with several combinations to both illustrate the effects of these choices and demonstrate the tradeoffs associated with each in terms of accuracy, robustness, and susceptibility to hyperparameters for structural discovery. We discuss possible methods to build descriptors using the raw image data and deep learning based semantic segmentation, as well as the implementation of variational autoencoder based representation. Furthermore, each workflow is applied to a range of feature sizes including NiO pillars within a La:SrMnO$_3$ matrix, ferroelectric domains in BiFeO$_3$, and topological defects in graphene. The code developed in this manuscript are open sourced and will be released at github.com/creangnc/AE_Workflows.
Machine learning has emerged as a powerful tool for the analysis of mesoscopic and atomically resolved images and spectroscopy in electron and scanning probe microscopy, with the applications ranging from feature extraction to information compression and elucidation of relevant order parameters to inversion of imaging data to reconstruct structural models. However, the fundamental limitation of machine learning methods is their correlative nature, leading to extreme susceptibility to confounding factors. Here, we implement the workflow for causal analysis of structural scanning transmission electron microscopy (STEM) data and explore the interplay between physical and chemical effects in ferroelectric perovskite across the ferroelectric-antiferroelectric phase transitions. The combinatorial library of the Sm-doped BiFeO3 is grown to cover the composition range from pure ferroelectric BFO to orthorhombic 20% Sm-doped BFO. Atomically resolved STEM images are acquired for selected compositions and are used to create a set of local compositional, structural, and polarization field descriptors. The information-geometric causal inference (IGCI) and additive noise model (ANM) analysis are used to establish the pairwise causal directions between the descriptors, ordering the data set in the causal direction. The causal chain for IGCI and ANM across the composition is compared and suggests the presence of common causal mechanisms across the composition series. Ultimately, we believe that the causal analysis of the multimodal data will allow exploring the causal links between multiple competing mechanisms that control the emergence of unique functionalities of morphotropic materials and ferroelectric relaxors.
Important recent advances in transmission electron microscopy instrumentation and capabilities have made it indispensable for atomic-scale materials characterization. At the same time, the availability of two-dimensional materials has provided ideal samples where each atom or vacancy can be resolved. Recent studies have also revealed new possibilities for a different application of focused electron irradiation: the controlled manipulation of structures and even individual atoms. Evaluating the full range of future possibilities for this method requires a precise physical understanding of the interactions of electrons with energies as low as 15 keV now used in (scanning) transmission electron microscopy, becoming feasible due to advances both in experimental techniques and in theoretical models. We summarize the state of current knowledge of the underlying physical processes based on the latest results on two-dimensional materials, with a focus on the physical principles of the electron-matter interaction, rather than the material-specific irradiation-induced defects it causes.
Physics-driven discovery in an autonomous experiment has emerged as a dream application of machine learning in physical sciences. Here we develop and experimentally implement deep kernel learning workflow combining the correlative prediction of the t arget functional response and its uncertainty from the structure, and physics-based selection of acquisition function guiding the navigation of the image space. Compared to classical Bayesian optimization methods, this approach allows to capture the complex spatial features present in the images of realistic materials, and dynamically learn structure-property relationships towards physical discovery. Here, this approach is illustrated for nanoplasmonic studies of the nanoparticles and experimentally implemented for bulk- and edge plasmon discovery in MnPS3, a lesser-known beam-sensitive layered 2D material. This approach is universal and is expected to be applicable to probe-based microscopic techniques including other STEM modalities and Scanning Probe Microscopies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا