ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged particle spectra from $mu^{-}$ capture on Al

102   0   0.0 ( 0 )
 نشر من قبل Andrei Gaponenko
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Published data on the emission of charged particles following nuclear muon capture are extremely limited. In addition to its interest as a probe of the nuclear response, these data are important for the design of some current searches for lepton flavor violation. This work presents momentum spectra of protons and deuterons following $mu^{-}$ capture in aluminum. It is the first measurement of a muon capture process performed with a tracking spectrometer. A precision of better than 10% over the momentum range of 100--190 MeV/c for protons is obtained; for deuterons of 145--250 MeV/c the precision is better than 20%. The observed partial yield of protons with emission momenta above 80 MeV/c (kinetic energy 3.4 MeV) is $0.0322pm0.0007(text{stat})pm0.0022(text{syst})$ per capture, and for deuterons above 130 MeV/c (4.5 MeV) it is $0.0122pm0.0009(text{stat})pm0.0006(text{syst})$. Extrapolating to total yields gives $0.045pm0.001(text{stat})pm0.003(text{syst}) pm 0.001(text{extrapolation})$ per capture for protons and $0.018pm0.001(text{stat})pm0.001(text{syst})pm 0.002(text{extrapolation})$ for deuterons, which are the most precise measurements of these quantities to date.

قيم البحث

اقرأ أيضاً

We present measurements of $ u_{mu}$ charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies $2<E_{ u}<20~GeV$, with $left< E_{ u}right>=8~GeV$, which have a reconstructed $mu^{-}$ scattering angle less than $17^circ$ to extract ratios of inclusive total cross sections as a function of neutrino energy $E_{ u}$ and flux-integrated differential cross sections with respect to the Bjorken scaling variable $x$. These results provide the first high-statistics direct measurements of nuclear effects in neutrino scattering using different targets in the same neutrino beam. Measured cross section ratios exhibit a relative depletion at low $x$ and enhancement at large $x$. Both become more pronounced as the nucleon number of the target nucleus increases. The data are not reproduced by GENIE, a conventional neutrino-nucleus scattering simulation, or by the alternative models for the nuclear dependence of inelastic scattering that are considered.
Natural gadolinium is widely used for its excellent thermal neutron capture cross section, because of its two major isotopes: $^{rm 155}$Gd and $^{rm 157}$Gd. We measured the $gamma$-ray spectra produced from the thermal neutron capture on targets co mprising a natural gadolinium film and enriched $^{rm 155}$Gd (in Gd$_{2}$O$_{3}$ powder) in the energy range from 0.11 MeV to 8.0 MeV, using the ANNRI germanium spectrometer at MLF, J-PARC. The freshly analysed data of the $^{rm 155}$Gd(n, $gamma$) reaction are used to improve our previously developed model (ANNRI-Gd model) for the $^{rm 157}$Gd(n, $gamma$) reaction, and its performance confirmed with the independent data from the $^{rm nat}$Gd(n, $gamma$) reaction. This article completes the development of an efficient Monte Carlo model required to simulate and analyse particle interactions involving the thermal neutron captures on gadolinium in any relevant future experiments.
We present a measurement of inclusive $J/psi$ production at mid-rapidity ($|y|<1$) in $p+p$ collisions at a center-of-mass energy of $sqrt{s}$ = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The differential producti on cross section for $J/psi$ as a function of transverse momentum ($p_T$) for $0<p_T<14$ GeV/$c$ and the total cross section are reported and compared to calculations from the color evaporation model and the non-relativistic Quantum Chromodynamics model. The dependence of $J/psi$ relative yields in three $p_T$ intervals on charged-particle multiplicity at mid-rapidity is measured for the first time in $p+p$ collisions at $sqrt{s}$ = 200 GeV and compared with that measured at $sqrt{s}$ = 7 TeV, PYTHIA8 and EPOS3 Monte Carlo generators, and the Percolation model prediction.
The CLAS Collaboration provides a comment on the physics interpretation of the results presented in a paper published by M. Amaryan et al. regarding the possible observation of a narrow structure in the mass spectrum of a photoproduction experiment.
Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the relative hadron energy $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target ($^6$LiD). They cover the kinematic domain in the photon virtuality $Q^2$ > 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا