ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of blazar PKS 2023-07 in flaring state with HESS and Fermi-LAT in 2016-2017 and constraints on an intrinsic cut-off

65   0   0.0 ( 0 )
 نشر من قبل Gabriel Emery
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PKS 2023-07 is a flat spectrum radio quasar located at a redshift $z=1.388$, farther than any source currently detected at very high energies ($E>100$ GeV). At such energies, absorption by the extragalactic background light (EBL) renders the detection of distant sources particularly challenging. The High Energy Stereoscopic System (H.E.S.S.) observed the source following reports from AGILE (April 2016) and Fermi-LAT (April 2016, September and October 2017) on high-flux states in gamma rays. During each of the three flaring periods, near-simultaneous observations were obtained with H.E.S.S., Fermi-LAT and multiple telescopes at other wavelengths. Though the source was not significantly detected by H.E.S.S., upper limits were derived for each observation period. Through constraints given by Fermi-LAT in the MeV--GeV domain and differential upper limits by H.E.S.S., we searched for an intrinsic cutoff in the EBL-corrected gamma ray spectrum of PKS 2023-07.



قيم البحث

اقرأ أيضاً

Flat spectrum radio quasars (FSRQs) can suffer strong absorption above E = 25/(1+z) GeV, due to gamma-gamma interaction if the emitting region is at sub-parsec scale from the super-massive black hole (SMBH). Gamma-ray flares from these astrophysical sources can investigate the location of the high-energy emission region and the physics of the radiating processes. We present a remarkable gamma-ray flaring activity from FSRQ PKS 2023-07 during April 2016, as detected by both AGILE and Fermi satellites. An intensive multi-wavelength campaign, triggered by Swift, covered the entire duration of the flaring activity, including the peak gamma-ray activity. We report the results of multiwavelength observations of the blazar. We found that, during the peak emission, the most energetic photon had an energy of 44 GeV, putting strong constraints on the opacity of the gamma-ray dissipation region. The overall Spectral Energy Distribution (SED) is interpreted in terms of leptonic models for blazar jet, with the emission site located beyond the Broad Line Region (BLR).
The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the highly dust-absorbed, reddened, and MeV-peaked flat spectrum radio quasar PKS 1830-211 (z=2.507). Its apparent isotropic gamma-ray luminosity (E>100 MeV ) averaged over $sim$ 3 years of observations and peaking on 2010 October 14/15 at 2.9 X 10^{50} erg s^{-1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time delayed variability to follow about 25 days after a primary flare, with flux about a factor 1.5 less. Two large gamma-ray flares of PKS 1830-211 have been detected by the LAT in the considered period and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the gamma rays flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum and with no significant correlation of X-ray flux with the gamma-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and gamma-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.
Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530 - 57589 using simultaneous multiwaveband data to understand the possible broadband emission scenario during the flare. Methods : The UV/optical and X-ray data from UVOT and XRT respectively on board Swift and high energy $gamma$-ray data from Fermi-LAT are used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands is quantified using discrete correlation function. The synchrotron self Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results : A decent correlation is seen between X-ray and high energy $gamma$-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The powerlaw index vs flux plot in $gamma$-ray band indicates the different emission regions for 0.1 - 3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy $gamma$-ray part of the SED in all states. The second zone is mainly required to produce less variable optical/UV and low energy $gamma$-ray emission. Conclusions : Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy $gamma$-rays.
115 - F. DAmmando 2013
We report on multiwavelength observations of the blazar PKS 0537-441 (z = 0.896) obtained from microwaves through gamma rays by SMA, REM, ATOM, Swift and Fermi during 2008 August-2010 April. Strong variability has been observed in gamma rays, with tw o major flaring episodes (2009 July and 2010 March) and a harder-when-brighter behaviour, quite common for FSRQs and low-synchrotron-peaked BL Lacs, in 2010 March. In the same way the SED of the source cannot be modelled by a simple synchrotron self-Compton model, as opposed to many BL Lacs, but the addition of an external Compton component of seed photons from a dust torus is needed. The 230 GHz light curve showed an increase simultaneous with the gamma-ray one, indicating co-spatiality of the mm and gamma-ray emission region likely at large distance from the central engine. The low, average, and high activity SED of the source could be fit changing only the electron distribution parameters, but two breaks in the electron distribution are necessary. The ensuing extra spectral break, located at NIR-optical frequencies, together with that in gamma rays seem to indicate a common origin, most likely due to an intrinsic feature in the underlying electron distribution. An overall correlation between the gamma-ray band with the R-band and K-band has been observed with no significant time lag. On the other hand, when inspecting the light curves on short time scales some differences are evident. In particular, flaring activity has been detected in NIR and optical bands with no evident gamma-ray counterparts in 2009 September and November. Moderate variability has been observed in X-rays with no correlation between flux and photon index. An increase of the detected X-ray flux with no counter part at the other wavelengths has been observed in 2008 October, suggesting once more a complex correlation between the emission at different energy bands.
We report on our study of high-energy properties of two peculiar TeV emitters: the extreme blazar 1ES 0347-121 and the extreme blazar candidate HESS J1943+213 located near the Galactic Plane. Both objects are characterized by quiescent synchrotron em ission with flat spectra extending up to the hard X-ray range, and both were reported to be missing GeV counterparts in the Fermi-LAT 2-year Source Catalog. We analyze a 4.5 year accumulation of the Fermi-LAT data, resulting in the detection of 1ES 0347-121 in the GeV band, as well as in improved upper limits for HESS J1943+213. We also present the analysis results of newly acquired Suzaku data for HESS J1943+213. The X-ray spectrum is well represented by a single power law extending up to 25 keV with photon index 2.00+/-0.02 and a moderate absorption in excess of the Galactic value, in agreement with previous X-ray observations. No short-term X-ray variability was found over the 80 ks duration of the Suzaku exposure. Under the blazar hypothesis, we modeled the spectral energy distributions of 1ES 0347-121 and HESS J1943+213, and derived constraints on the intergalactic magnetic field strength and source energetics. We conclude that although the classification of HESS J1943+213 has not yet been determined, the blazar hypothesis remains the most plausible option, since in particular the broad-band spectra of the two analyzed sources along with the source model parameters closely resemble each other, and the newly available WISE and UKIDSS data for HESS J1943+213 are consistent with the presence of an elliptical host at the distance of approximately ~600 Mpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا