ﻻ يوجد ملخص باللغة العربية
According to the t Hooft-Susskind holography, the black hole entropy,$S_mathrm{BH}$, is carried by the chaotic microscopic degrees of freedom, which live in the near horizon region and have a Hilbert space of states of finite dimension $d=exp(S_mathrm{BH})$. In previous work we have proposed that the near horizon geometry, when the microscopic degrees of freedom can be resolved, can be described by the AdS$_2[mathbb{Z}_N]$ discrete, finite and random geometry, where $Npropto S_mathrm{BH}$. It has been constructed by purely arithmetic and group theoretical methods in order to explain, in a direct way, the finiteness of the entropy, $S_mathrm{BH}$. What has been left as an open problem is how the smooth AdS$_2$ geometry can be recovered, in the limit when $Ntoinfty$. In the present article we solve this problem, by showing that the discrete and finite AdS$_2[mathbb{Z}_N]$ geometry can be embedded in a family of finite geometries, AdS$_2^M[mathbb{Z}_N]$, where $M$ is another integer. This family can be constructed by an appropriate toroidal compactification and discretization of the ambient $(2+1)$-dimensional Minkowski space-time. In this construction $N$ and $M$ can be understood as infrared and ultraviolet cutoffs respectively. The above construction enables us to obtain the continuum limit of the AdS$_2^M[mathbb{Z}_N]$ discrete and finite geometry, by taking both $N$ and $M$ to infinity in a specific correlated way, following a reverse process: Firstly, by recovering the continuous, toroidally compactified, AdS$_2[mathbb{Z}_N]$ geometry by removing the ultraviolet cutoff; secondly, by removing the infrared cutoff in a specific decompactification limit, while keeping the radius of AdS$_2$ finite. It is in this way that we recover the standard non-compact AdS$_2$ continuum space-time. This method can be applied directly to higher-dimensional AdS spacetimes.
We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no $AdS_n$ backgrounds with $n ot=3$. Mo
We show that at the level of linear response the low frequency limit of a strongly coupled field theory at finite temperature is determined by the horizon geometry of its gravity dual, i.e. by the membrane paradigm fluid of classical black hole mecha
The thermodynamics and phase transitions of charged RN-AdS and rotating Kerr-AdS black holes in a generalized Randall-Sundrum braneworld are investigated in the framework of thermodynamic geometry. A detailed analysis of the thermodynamics, stability
We study extremal curves associated with a functional which is linear in the curves torsion. The functional in question is known to capture the properties of entanglement entropy for two-dimensional conformal field theories with chiral anomalies and
We study codimension-even conical defects that contain a deficit solid angle around each point along the defect. We show that they lead to a delta function contribution to the Lovelock scalar and we compute the contribution by two methods. We then sh