ﻻ يوجد ملخص باللغة العربية
In this note we study chaos in generic quantum systems with a global symmetry generalizing seminal work [arXiv : 1503.01409] by Maldacena, Shenker and Stanford. We conjecture a bound on instantaneous chaos exponent in a thermodynamic ensemble at temperature $T$ and chemical potential $mu$ for the continuous global symmetry under consideration. For local operators which could create excitation up to some fixed charge, the bound on chaos (Lyapunov) exponent is independent of chemical potential $lambda_L leq frac{2 pi T}{ hbar} $. On the other hand when the operators could create excitation of arbitrary high charge, we find that exponent must satisfy $lambda_L leq frac{2 pi T}{(1-|frac{mu}{mu_c}|) hbar} $, where $mu_c$ is the maximum value of chemical potential for which the thermodynamic ensemble makes sense. As specific examples of quantum mechanical systems we consider conformal field theories. In a generic conformal field theory with internal $U(1)$ symmetry living on a cylinder the former bound is applicable, whereas in more interesting examples of holographic two dimensional conformal field theories dual to Einstein gravity, we argue that later bound is saturated in presence of a non-zero chemical potential for rotation.
Chaotic quantum many-body dynamics typically lead to relaxation of local observables. In this process, known as quantum thermalization, a subregion reaches a thermal state due to quantum correlations with the remainder of the system, which acts as an
The dynamics of chaotic systems are, by definition, exponentially sensitive to initial conditions and may appear rather random. In this work, we explore relations between the chaotic dynamics of an observable and the dynamics of information (entropy)
We analyze the spectral properties of a $d$-dimensional HyperCubic (HC) lattice model originally introduced by Parisi. The U(1) gauge links of this model give rise to a magnetic flux of constant magnitude $phi$ but random orientation through the face
Motivated by the recent shocking results from RHIC and LHC that show quark-gluon plasma signatures in small systems, we study a simple model of a massless, noninteracting scalar field confined with Dirichlet boundary conditions. We use this system to
Protected zero modes in quantum physics traditionally arise in the context of ground states of many-body Hamiltonians. Here we study the case where zero modes exist in the center of a reflection-symmetric many-body spectrum, giving rise to the notion