ﻻ يوجد ملخص باللغة العربية
We analyze the de Sitter construction of cite{KKLT} using ten-dimensional supergravity, finding exact agreement with the four-dimensional effective theory. Starting from the fermionic couplings in the D7-brane action, we derive the ten-dimensional stress-energy due to gaugino condensation on D7-branes. We demonstrate that upon including this stress-energy, as well as that due to anti-D3-branes, the ten-dimensional equations of motion require the four-dimensional curvature to take precisely the value determined by the four-dimensional effective theory of cite{KKLT}.
In previous work, we found ten-dimensional solutions to the supergravity equations of motion with a dS$_4$ factor and O8-planes. We generalize this analysis and obtain other solutions in the same spirit, with an O8$_+$ and an O6$_-$. We examine our o
We propose a new mechanism for obtaining de Sitter vacua in type IIB string theory compactified on (orientifolded) Calabi-Yau manifolds similar to those recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum appears in KKLT model af
We present further no-go theorems for classical de Sitter vacua in Type II string theory, i.e., de Sitter constructions that do not invoke non-perturbative effects or explicit supersymmetry breaking localized sources. By analyzing the stability of th
We study the arguments given in [1] which suggest that the uplifting procedure in the KKLT construction is not valid. First we show that the modification of the SUSY breaking sector of the nilpotent superfield, as proposed in [1], is not consistent w
No-scale supergravity is the appropriate general framework for low-energy effective field theories derived from string theory. The simplest no-scale Kahler potential with a single chiral field corresponds to a compactification to flat Minkowski space