ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Point-Like TeV Sources in the Large Magellanic Cloud

143   0   0.0 ( 0 )
 نشر من قبل Nukri Komin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Large Magellanic Cloud (LMC) is an irregular satellite galaxy of the Milky Way, which has been observed extensively in Very-High-Energy (VHE) gamma rays with the H.E.S.S. telescopes since 2004 and reaches now a total observation time of 280 h. The exposure of the LMC is rather inhomogeneous, the region around the Tarantula Nebula having an exposure of up to 220 h while the exposure in the outer parts of the LMC is as low as 5h. A search for point-like sources was performed on this data set. This search resulted in the detection of the four already known sources (N 157B, N 132D, 30 Dor C and LMC P3) but no further significant emission was revealed. Based on catalogues of pulsars, supernova remnants and high-mass X-ray binaries upper limits on the gamma-ray flux of these objects were derived. In this talk updated results on the known gamma-ray sources as well as upper limits on the non-detected objects will be presented. It will be shown that for a large part of the LMC the existence of VHE gamma-ray sources with a similar luminosity as the already known sources can be excluded.

قيم البحث

اقرأ أيضاً

The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of 100 billion electron volts for a deep exposure of 210 hours. Three sources of different types we re detected: the pulsar wind nebula of the most energetic pulsar known N 157B, the radio-loud supernova remnant N 132D and the largest non-thermal X-ray shell - the superbubble 30 Dor C. The unique object SN 1987A is, surprisingly, not detected, which constrains the theoretical framework of particle acceleration in very young supernova remnants. These detections reveal the most energetic tip of a gamma-ray source population in an external galaxy, and provide via 30 Dor C the unambiguous detection of gamma-ray emission from a superbubble.
We present a radio search for WIMP dark matter in the Large Magellanic Cloud (LMC). We make use of a recent deep image of the LMC obtained from observations of the Australian Square Kilometre Array Pathfinder (ASKAP), and processed as part of the Evo lutionary Map of the Universe (EMU) survey. LMC is an extremely promising target for WIMP searches at radio frequencies because of the large J-factor and the presence of a substantial magnetic field. We detect no evidence for emission arising from WIMP annihilations and derive stringent bounds. This work excludes the thermal cross section for masses below 480 GeV and annihilation into quarks.
We present a comprehensive multi-frequency catalogue of radio sources behind the Large Magellanic Cloud between 0.2 and 20 GHz, gathered from a combination of new and legacy radio continuum surveys. This catalogue covers an area of $sim$144~deg$^2$ a t angular resolutions from 45 arcsec to $sim$3 arcmin. We find 6434 discrete radio sources in total, of which 3789 are detected at two or more radio frequencies. We estimate the median spectral index ($alpha$; where $S_{v}sim u^alpha$) of $alpha = -0.89 $ and mean of $-0.88 pm 0.48$ for 3636 sources detected exclusively at two frequencies (0.843 and 1.384 GHz) with similar resolution (FWHM $sim$40-45 arcsec). The large frequency range of the surveys makes it an effective tool to investigate Gigahertz Peak Spectrum (GPS), Compact Steep Spectrum (CSS) and Infrared Faint Radio sources populations within our sample. We find 10 GPS candidates with peak frequencies near 5 GHz, from which we estimate their linear size. 1866 sources from our catalogue are (CSS) candidates with $alpha <-0.8$. We found six candidates for High Frequency Peaker (HFP) sources, whose radio fluxes peak above 5 GHz and no sources with unconstrained peaks and $alpha~>0.5$. We found optical counterparts for 343 of the radio continuum sources, of which 128have a redshift measurement. Finally, we investigate the population of 123 Infrared Faint Radio Sources (IFRSs) found in this study.
A survey of the inner Galaxy region of Galactic longitude l in [+15, +50] degree and latitude b in [-4,+4] degree is performed using one-third of the High Altitude Water Cherenkov (HAWC) Observatory operated during its construction phase. To address the ambiguities arising from unresolved sources in the data, we use a maximum likelihood technique to identify point source candidates. Ten sources and candidate sources are identified in this analysis. Eight of these are associated with known TeV sources but not all have differential fluxes compatible with previous measurements. Three sources are detected with significances $>5,sigma$ after accounting for statistical trials, and are associated with known TeV sources.
At a distance of 50 kpc and with a dark matter mass of $sim10^{10}$ M$_{odot}$, the Large Magellanic Cloud (LMC) is a natural target for indirect dark matter searches. We use five years of data from the Fermi Large Area Telescope (LAT) and updated mo dels of the gamma-ray emission from standard astrophysical components to search for a dark matter annihilation signal from the LMC. We perform a rotation curve analysis to determine the dark matter distribution, setting a robust minimum on the amount of dark matter in the LMC, which we use to set conservative bounds on the annihilation cross section. The LMC emission is generally very well described by the standard astrophysical sources, with at most a $1-2sigma$ excess identified near the kinematic center of the LMC once systematic uncertainties are taken into account. We place competitive bounds on the dark matter annihilation cross section as a function of dark matter particle mass and annihilation channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا