ﻻ يوجد ملخص باللغة العربية
In this paper we introduce a novel Salience Affected Artificial Neural Network (SANN) that models the way neuromodulators such as dopamine and noradrenaline affect neural dynamics in the human brain by being distributed diffusely through neocortical regions, allowing both salience signals to modulate cognition immediately, and one time learning to take place through strengthening entire patterns of activation at one go. We present a model that is capable of one-time salience tagging in a neural network trained to classify objects, and returns a salience response during classification (inference). We explore the effects of salience on learning via its effect on the activation functions of each node, as well as on the strength of weights between nodes in the network. We demonstrate that salience tagging can improve classification confidence for both the individual image as well as the class of images it belongs to. We also show that the computation impact of producing a salience response is minimal. This research serves as a proof of concept, and could be the first step towards introducing salience tagging into Deep Learning Networks and robotics.
Sensory predictions by the brain in all modalities take place as a result of bottom-up and top-down connections both in the neocortex and between the neocortex and the thalamus. The bottom-up connections in the cortex are responsible for learning, pa
Artificial neural networks have diverged far from their early inspiration in neurology. In spite of their technological and commercial success, they have several shortcomings, most notably the need for a large number of training examples and the resu
Spiking neural networks (SNNs) has attracted much attention due to its great potential of modeling time-dependent signals. The firing rate of spiking neurons is decided by control rate which is fixed manually in advance, and thus, whether the firing
A developmental disorder that severely damages communicative and social functions, the Autism Spectrum Disorder (ASD) also presents aspects related to mental rigidity, repetitive behavior, and difficulty in abstract reasoning. More, imbalances betwee
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-