ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic observations of dust emission and polarisation of Galactic cold clumps

113   0   0.0 ( 0 )
 نشر من قبل Mika Juvela
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mika Juvela




اسأل ChatGPT حول البحث

The Planck Catalogue of Galactic Cold Clumps (PGCC) contains over 13000 sources detected based on their cold dust signature. They are believed to consist of a mixture of quiescent, pre-stellar, and already star-forming objects. We extracted PGCC-type objects from cloud simulations and examined their physical and polarisation properties. The comparison with the PGCC catalogue helps to characterise the PGCC sample and provides valuable tests for numerical simulations of interstellar medium. We used several MHD snapshots to define the density field of our models. Sub-millimetre images of the surface brightness and polarisation were obtained with radiative transfer calculations. We examined the statistics of synthetic cold clump catalogues and examined the variations of the clump polarisation fraction p. The clump sizes, aspect ratios, and temperatures in the synthetic catalogue are similar to the PGCC. The fluxes and column densities are smaller by a factor of a few. Rather than with an increased dust opacity, this could be explained by increasing the average column density of the models by a factor of two to three, close to N(H2)= 10^22 cm-2. When the line of sight is parallel to the mean magnetic field, the polarisation fraction tends to increase towards the clump centres, contrary to observations. When the field is perpendicular, the polarisation fraction tends to decrease towards the clumps, but the drop in $p$ is small (e.g. from p~8% to p~7%). Magnetic field geometry reduces the polarisation fraction in the simulated clumps by only Delta p~1% on average. The larger drop seen towards the actual PGCC clumps suggests some loss of grain alignment in the dense medium, such as predicted by the radiative torque mechanism. The statistical study is not able to quantify dust opacity changes at the scale of the PGCC clumps.

قيم البحث

اقرأ أيضاً

Analysis of all-sky Planck submillimetre observations and the IRAS 100um data has led to the detection of a population of Galactic cold clumps. The clumps can be used to study star formation and dust properties in a wide range of Galactic environment s. Our aim is to measure dust spectral energy distribution (SED) variations as a function of the spatial scale and the wavelength. We examine the SEDs at large scales using IRAS, Planck, and Herschel data. At smaller scales, we compare with JCMT/SCUBA-2 850um maps with Herschel data that are filtered using the SCUBA-2 pipeline. Clumps are extracted using the Fellwalker method and their spectra are modelled as modified blackbody functions. According to IRAS and Planck data, most fields have dust colour temperatures T_C ~ 14-18K and opacity spectral index values of beta=1.5-1.9. The clumps/cores identified in SCUBA-2 maps have T~ 13K and similar beta values. There are some indications of the dust emission spectrum becoming flatter at wavelengths longer than 500um. In fits involving Planck data, the significance is limited by the uncertainty of the corrections for CO line contamination. The fits to the SPIRE data give a median beta value slightly above 1.8. In the joint SPIRE and SCUBA-2 850um fits the value decreases to beta ~1.6. Most of the observed T-beta anticorrelation can be explained by noise. The typical submillimetre opacity spectral index beta of cold clumps is found to be ~1.7. This is above the values of diffuse clouds but lower than in some previous studies of dense clumps. There is only tentative evidence of T-beta anticorrelation and beta decreasing at millimetre wavelengths.
We present the first search for spinning dust emission from a sample of 34 Galactic cold cores, performed using the CARMA interferometer. For each of our cores we use photometric data from the Herschel Space Observatory to constrain N_{H}, T_{d}, n_{ H}, and G_{0}. By computing the mass of the cores and comparing it to the Bonnor-Ebert mass, we determined that 29 of the 34 cores are gravitationally unstable and undergoing collapse. In fact, we found that 6 cores are associated with at least one young stellar object, suggestive of their proto-stellar nature. By investigating the physical conditions within each core, we can shed light on the cm emission revealed (or not) by our CARMA observations. Indeed, we find that only 3 of our cores have any significant detectable cm emission. Using a spinning dust model, we predict the expected level of spinning dust emission in each core and find that for all 34 cores, the predicted level of emission is larger than the observed cm emission constrained by the CARMA observations. Moreover, even in the cores for which we do detect cm emission, we cannot, at this stage, discriminate between free-free emission from young stellar objects and spinning dust emission. We emphasise that, although the CARMA observations described in this analysis place important constraints on the presence of spinning dust in cold, dense environments, the source sample targeted by these observations is not statistically representative of the entire population of Galactic cores.
Large-scale outflows from starburst galaxies are multi-phase, multi-component fluids. Charge-exchange lines which originate from the interfacing surface between the neutral and ionised components are a useful diagnostic of the cold dense structures i n the galactic outflow. From the charge-exchange lines observed in the nearby starburst galaxy M82, we conduct surface-to-volume analyses and deduce that the cold dense clumps in its galactic outflow have flattened shapes, resembling a hamburger or a pancake morphology rather than elongated shapes. The observed filamentary H$alpha$ features are therefore not prime charge-exchange line emitters. They are stripped material torn from the slow moving dense clumps by the faster moving ionised fluid which are subsequently warmed and stretched into elongated shapes. Our findings are consistent with numerical simulations which have shown that cold dense clumps in galactic outflows can be compressed by ram pressure, and also progressively ablated and stripped before complete disintegration. We have shown that some clumps could survive their passage along a galactic outflow. These are advected into the circumgalactic environment, where their remnants would seed condensation of the circumgalactic medium to form new clumps. The infall of these new clumps back into the galaxy and their subsequent re-entrainment into the galactic outflow form a loop process of galactic material recycling.
216 - Ningyu Tang , Di Li , Pei Zuo 2019
We present a pilot HI survey of 17 Planck Galactic Cold Clumps (PGCCs) with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). HI Narrow Self-Absorption (HINSA) is an effective method to detect cold HI being mixed with molecular hydrog en H$_2$ and improves our understanding of the atomic to molecular transition in the interstellar medium. HINSA was found in 58% PGCCs that we observed. The column density of HINSA was found to have an intermediate correlation with that of $^{13}$CO, following $rm log( N(HINSA)) = (0.52pm 0.26) log(N_{^{13}CO}) + (10 pm 4.1) $. HI abundance relative to total hydrogen [HI]/[H] has an average value of $4.4times 10^{-3}$, which is about 2.8 times of the average value of previous HINSA surveys toward molecular clouds. For clouds with total column density N$rm_H >5 times 10^{20}$ cm$^{-2}$, an inverse correlation between HINSA abundance and total hydrogen column density is found, confirming the depletion of cold HI gas during molecular gas formation in more massive clouds. Nonthermal line width of $^{13}$CO is about 0-0.5 km s$^{-1}$ larger than that of HINSA. One possible explanation of narrower nonthermal width of HINSA is that HINSA region is smaller than that of $^{13}$CO. Based on an analytic model of H$_2$ formation and H$_2$ dissociation by cosmic ray, we found the cloud ages to be within 10$^{6.7}$-10$^{7.0}$ yr for five sources.
The Central Molecular Zone (CMZ), covering the inner ~1$^circ$ of the Galactic plane has been mapped at 2 mm using the GISMO bolometric camera on the 30 m IRAM telescope. The $21$ resolution maps show abundant emission from cold molecular clouds, fro m star forming regions, and from one of the Galactic center nonthermal filaments. In this work we use the Herschel Hi-GAL data to model the dust emission across the Galactic center. We find that a single-temperature fit can describe the 160 -- 500 $mu$m emission for most lines of sight, if the long-wavelength dust emissivity scales as $lambda^{-beta}$ with $beta approx 2.25$. This dust model is extrapolated to predict the 2 mm dust emission. Subtraction of the model from the GISMO data provides a clearer look at the 2 mm emission of star-forming regions and the brightest nonthermal filament.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا