ترغب بنشر مسار تعليمي؟ اضغط هنا

Prevalence of neutral gas in centres of merging galaxies-II: nuclear HI and multi-wavelength properties

51   0   0.0 ( 0 )
 نشر من قبل Rajeshwari Dutta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a sample of 38 radio-loud galaxy mergers at z<=0.2, we confirm the high detection rate (~84%) of HI 21-cm absorption in mergers, which is significantly higher (~4 times) than in non-mergers. The distributions of the HI column density [N(HI)] and velocity shift of the absorption with respect to the systemic redshift of the galaxy hosting the radio source in mergers are significantly different from that in non-mergers. We investigate the connection of the nuclear HI gas with various multi-wavelength properties of the mergers. While the inferred N(HI) and gas kinematics do not show strong (i.e. >=3-sigma level) correlation with galaxy properties, we find that the incidence and N(HI) of absorption tend to be slightly higher at smaller projected separations between the galaxy pairs and among the lower stellar mass-radio galaxies. The incidence, N(HI) and line width of HI absorption increase from the pre-merger to the post-merger stages. The 100% detection rate in post-mergers indicates that the neutral gas in the circumnuclear regions survives the coalescence period and is not yet quenched by the nuclear radio activity.

قيم البحث

اقرأ أيضاً

We present new ~1 resolution data of the dense molecular gas in the central 50-100 pc of four nearby Seyfert galaxies. PdBI observations of HCN and, in 2 of the 4 sources, simultaneously HCO+ allow us to carefully constrain the dynamical state of the dense gas surrounding the AGN. Analysis of the kinematics shows large line widths of 100-200 km/s FWHM that can only partially arise from beam smearing of the velocity gradient. The observed morphological and kinematic parameters (dimensions, major axis position angle, red and blue channel separation, and integrated line width) are well reproduced by a thick disk, where the emitting dense gas has a large intrinsic dispersion (20-40 km/s), implying that it exists at significant scale heights (25-30% of the disk radius). To put the observed kinematics in the context of the starburst and AGN evolution, we estimate the Toomre Q parameter. We find this is always greater than the critical value, i.e. Q is above the limit such that the gas is stable against rapid star formation. This is supported by the lack of direct evidence, in these 4 Seyfert galaxies, for on-going star formation close around the AGN. Instead, any current star formation tends to be located in a circumnuclear ring. We conclude that the physical conditions are indeed not suited to star formation within the central ~100 pc.
A complete, flux density limited sample of 96 faint ($> 0.5$ mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including SERVS, SWIRE, UKIDSS and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric reshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and starforming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions of Paper I that the faint, flat-spectrum sources which are found to dominate the 10C sample below $sim 1$ mJy are the cores of radio galaxies. The properties of the 10C sample are compared to the SKADS Simulated Skies; a population of low-redshift starforming galaxies predicted by the simulation is not found in the observed sample.
Measurements of the neutral hydrogen gas content of a sample of 93 post-merger galaxies are presented, from a combination of matches to the ALFALFA.40 data release and new Arecibo observations. By imposing completeness thresholds identical to that of the ALFALFA survey, and by compiling a mass-, redshift- and environment-matched control sample from the public ALFALFA.40 data release, we calculate gas fraction offsets (Delta f_gas) for the post-mergers, relative to the control sample. We find that the post-mergers have HI gas fractions that are consistent with undisturbed galaxies. However, due to the relative gas richness of the ALFALFA.40 sample, from which we draw our control sample, our measurements of gas fraction enhancements are likely to be conservative lower limits. Combined with comparable gas fraction measurements by Fertig et al. in a sample of galaxy pairs, who also determine gas fraction offsets consistent with zero, we conclude that there is no evidence for significant neutral gas consumption throughout the merger sequence. From a suite of 75 binary merger simulations we confirm that star formation is expected to decrease the post-merger gas fraction by only 0.06 dex, even several Gyr after the merger. Moreover, in addition to the lack of evidence for gas consumption from gas fraction offsets, the observed HI detection fraction in the complete sample of post-mergers is twice as high as the controls, which suggests that the post-merger gas fractions may actually be enhanced. We demonstrate that a gas fraction enhancement in post-mergers, relative to a stellar mass-matched control sample, would indeed be the natural result of merging randomly drawn pairs from a parent population which exhibits a declining gas fraction with increasing stellar mass.
We use observations made with the Giant Metrewave Radio Telescope (GMRT) to probe the neutral hydrogen (HI) gas content of field galaxies in the VIMOS VLT Deep Survey (VVDS) 14h field at $z approx 0.32$. Because the HI emission from individual galaxi es is too faint to detect at this redshift, we use an HI spectral stacking technique using the known optical positions and redshifts of the 165 galaxies in our sample to co-add their HI spectra and thus obtain the average HI mass of the galaxies. Stacked HI measurements of 165 galaxies show that 95 per cent of the neutral gas is found in blue, star-forming galaxies. Among these galaxies, those having lower stellar mass are more gas-rich than more massive ones. We apply a volume correction to our HI measurement to evaluate the HI gas density at $z approx 0.32$ as $Omega_{HI}=(0.50pm0.18) times 10^{-3}$ in units of the cosmic critical density. This value is in good agreement with previous results at z < 0.4, suggesting no evolution in the neutral hydrogen gas density over the last $sim 4$ Gyr. However the $z approx 0.32$ gas density is lower than that at $z sim 5$ by at least a factor of two.
We analyze the radial distribution of HI gas for 23 disk galaxies with unusually high HI content from the Bluedisk sample, along with a similar-sized sample of normal galaxies. We propose an empirical model to fit the radial profile of the HI surface density, an exponential function with a depression near the center. The radial HI surface density profiles are very homogeneous in the outer regions of the galaxy; the exponentially declining part of the profile has a scale-length of $sim 0.18$ R1, where R1 is the radius where the column density of the HI is 1 M$_{odot}$ pc$^{-2}$. This holds for all galaxies, independent of their stellar or HI mass. The homogenous outer profiles, combined with the limited range in HI surface density in the non-exponential inner disk, results in the well-known tight relation between HI size and HI mass. By comparing the radial profiles of the HI-rich galaxies with those of the control systems, we deduce that in about half the galaxies, most of the excess gas lies outside the stellar disk, in the exponentially declining outer regions of the HI disk. In the other half, the excess is more centrally peaked. We compare our results with existing smoothed-particle hydrodynamical simulations and semi-analytic models of disk galaxy formation in a $Lambda$ Cold Dark Matter universe. Both the hydro simulations and the semi-analytic models reproduce the HI surface density profiles and the HI size-mass relation without further tuning of the simulation and model inputs. In the semi-analytic models, the universal shape of the outer HI radial profiles is a consequence of the {em assumption} that infalling gas is always distributed exponentially. The conversion of atomic gas to molecular form explains the limited range of HI surface densities in the inner disk. These two factors produce the tight HI mass-size relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا