ﻻ يوجد ملخص باللغة العربية
We formulate the theory of nonlinear viscoelastic hydrodynamics of anisotropic crystals in terms of dynamical Goldstone scalars of spontaneously broken translational symmetries, under the assumption of homogeneous lattices and absence of plastic deformations. We reformulate classical elasticity effective field theory using surface calculus in which the Goldstone scalars naturally define the position of higher-dimensional crystal cores, covering both elastic and smectic crystal phases. We systematically incorporate all dissipative effects in viscoelastic hydrodynamics at first order in a long-wavelength expansion and study the resulting rheology equations. In the process, we find the necessary conditions for equilibrium states of viscoelastic materials. In the linear regime and for isotropic crystals, the theory includes the description of Kelvin-Voigt materials. Furthermore, we provide an entirely equivalent description of viscoelastic hydrodynamics as a novel theory of higher-form superfluids in arbitrary dimensions where the Goldstone scalars of partially broken generalised global symmetries play an essential role. An exact map between the two formulations of viscoelastic hydrodynamics is given. Finally, we study holographic models dual to both these formulations and map them one-to-one via a careful analysis of boundary conditions. We propose a new simple holographic model of viscoelastic hydrodynamics by adopting an alternative quantisation for the scalar fields.
We show that the correct dual hydrodynamic description of homogeneous holographic models with spontaneously broken translations must include the so-called strain pressure -- a novel transport coefficient proposed recently. Taking this new ingredient
We formulate the Schwinger-Keldysh effective field theory of hydrodynamics without boost symmetry. This includes a spacetime covariant formulation of classical hydrodynamics without boosts with an additional conserved particle/charge current coupled
We study the phenomenon of additional light waves (ALWs), observed in crystal optics: two or more electromagnetic waves with the same polarization, but different refractive index, propagate simultaneously in a isotropic medium. We show that ALWs are
In this paper, we discuss relativistic hydrodynamics for a massless Dirac fermion in $(2+1)$ dimensions, which has the parity anomaly -- a global t Hooft anomaly between $mathrm{U}(1)$ and parity symmetries. We investigate how hydrodynamics implement
At leading order, the $S$-matrices in QED and gravity are known to factorise, providing unambiguous determinations of the parts divergent due to infrared contributions. The soft $S$-matrices defined in this fashion are shown to be defined entirely in