ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional orbital Hall insulators

165   0   0.0 ( 0 )
 نشر من قبل Luis Canonico
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The orbital-Hall effect (OHE), similarly to the spin-Hall effect (SHE), refers to the creation of a transverse flow of orbital angular momentum that is induced by a longitudinally applied electric field. For systems in which the spin-orbit coupling (SOC) is sizeable, the orbital and spin angular momentum degrees of freedom are coupled, and an interrelationship between charge, spin and orbital angular momentum excitations is naturally established. The OHE has been explored mostly in metallic systems, where it can be quite strong. However, several of its features remain unexplored in two-dimensional (2D) materials. Here, we investigate the role of orbital textures for the OHE displayed by multi-orbital 2D materials. We predict the appearance of a rather large orbital Hall effect in these systems both in their metallic and insulating phases. In some cases, the orbital Hall currents are larger than the spin Hall ones, and their use as information carriers widens the development possibilities of novel spin-orbitronic devices.

قيم البحث

اقرأ أيضاً

The fabrication of bismuthene on top of SiC paved the way for substrate engineering of room temperature quantum spin Hall insulators made of group V atoms. We perform large-scale quantum transport calculations in these 2d materials to analyse the ric h phenomenology that arises from the interplay between topology, disorder, valley and spin degrees of freedom. For this purpose, we consider a minimal multi-orbital real-space tight-binding hamiltonian and use a Chebyshev polynomial expansion technique. We discuss how the quantum spin Hall states are affected by disorder, sublattice resolved potential and Rashba spin-orbit coupling.
Topological states of matter have attracted a lot of attention due to their many intriguing transport properties. In particular, two-dimensional topological insulators (2D TI) possess gapless counter propagating conducting edge channels, with opposit e spin, that are topologically protected from backscattering. Two basic features are supposed to confirm the existence of the ballistic edge channels in the submicrometer limit: the 4-terminal conductance is expected to be quantized at the universal value $2e^{2}/h$, and a nonlocal signal should appear due to a net current along the sample edge, carried by the helical states. On the other hand for longer channels the conductance has been found to deviate from the quantized value. This article reviewer the experimental and theoretical work related to the transport in two-dimensional topological insulators (2D-TI), based on HgTe quantum wells in zero magnetic field. We provide an overview of the basic mechanisms predicting a deviation from the quantized transport due to backscattering (accompanied by spin-flips) between the helical channels. We discuss the details of the model, which takes into account the edge and bulk contribution to the total current and reproduces the experimental results.
One of the most fascinating challenges in Physics is the realization of an electron-based counterpart of quantum optics, which requires the capability to generate and control single electron wave packets. The edge states of quantum spin Hall (QSH) sy stems, i.e. two-dimensional (2D) topological insulators realized in HgTe/CdTe and InAs/GaSb quantum wells, may turn the tide in the field, as they do not require the magnetic field that limits the implementations based on quantum Hall effect. Here we show that an electric pulse, localized in space and/or time and applied at a QSH edge, can photoexcite electron wavepackets by intra-branch electrical transitions, without invoking the bulk states or the Zeeman coupling. Such wavepackets are spin-polarised and propagate in opposite directions, with a density profile that is independent of the initial equilibrium temperature and that does not exhibit dispersion, as a result of the linearity of the spectrum and of the chiral anomaly characterising massless Dirac electrons. We also investigate the photoexcited energy distribution and show how, under appropriate circumstances, minimal excitations (Levitons) are generated. Furthermore, we show that the presence of a Rashba spin-orbit coupling can be exploited to tailor the shape of photoexcited wavepackets. Possible experimental realizations are also discussed.
We study zigzag interfaces between insulating compounds that are isostructural to graphene, specifically II-VI, III-V and IV-IV two-dimensional (2D) honeycomb insulators. We show that these one-dimensional interfaces are polar, with a net density of excess charge that can be simply determined by using the ideal (integer) formal valence charges, regardless of the predominant covalent character of the bonding in these materials. We justify this finding on fundamental physical grounds, by analyzing the topology of the formal polarization lattice in the parent bulk materials. First principles calculations elucidate an electronic compensation mechanism not dissimilar to oxide interfaces, which is triggered by a Zener-like charge transfer between interfaces of opposite polarity. In particular, we predict the emergence of one dimensional electron and hole gases (1DEG), which in some cases are ferromagnetic half-metallic.
Two-dimensional (2D) materials have attracted much recent attention because they exhibit various distinct intrinsic properties/functionalities, which are, however, usually not interchangeable. Interestingly, here we propose a generic approach to conv ert 2D semiconductors, which are amply abundant, to 2D topological insulators (TIs), which are less available, via selective atomic adsorption and strain engineering. The approach is underlined by an orbital design principle that involves introducing an extrinsic s-orbital state into the intrinsic sp-bands of a 2D semiconductor, so as to induce s-p band inversion for a TI phase, as demonstrated by tight-binding model analyses. Remarkably, based on first-principles calculations, we apply this approach to convert the semiconducting monolayer CuS and CuTe into a TI by adsorbing Na and K respectively with a proper s-level energy, and CuSe into a TI by adsorbing a mixture of Na and K with a tuned s-level energy or by adsorbing either Na or K on a strained CuSe with a tuned p-level valence band edge. Our findings open a new door to the discovery of TIs by a predictive materials design, beyond finding a preexisting 2D TI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا