ترغب بنشر مسار تعليمي؟ اضغط هنا

Day-ahead Operation of an Aggregator of Electric Vehicles via Optimization under Uncertainty

84   0   0.0 ( 0 )
 نشر من قبل Juan M. Morales Dr.
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We pose the aggregators problem as a bilevel model, where the upper level minimizes the total operation costs of the fleet of EVs, while each lower level minimizes the energy available to each vehicle for transportation given a certain charging plan. Thanks to the totally unimodular character of the constraint matrix in the lower-level problems, the model can be mathematically recast as a computationally efficient mixed-integer program that delivers charging schedules that are robust against the uncertain availability of the EVs. Finally, we use synthetic data from the National Household Travel Survey 2017 to analyze the behavior of the EV aggregator from both economic and technical viewpoints and compare it with the results from a deterministic approach.



قيم البحث

اقرأ أيضاً

The growing use of electric vehicles (EVs) may hinder their integration into the electricity system as well as their efficient operation due to the intrinsic stochasticity associated with their driving patterns. In this work, we assume a profit-maxim izer EV-aggregator who participates in the day-ahead electricity market. The aggregator accounts for the technical aspects of each individual EV and the uncertainty in its driving patterns. We propose a hierarchical optimization approach to represent the decision-making of this aggregator. The upper level models the profit-maximizer aggregators decisions on the EV-fleet operation, while a series of lower-level problems computes the worst-case EV availability profiles in terms of battery draining and energy exchange with the market. Then, this problem can be equivalently transformed into a mixed-integer linear single-level equivalent given the totally unimodular character of the constraint matrices of the lower-level problems and their convexity. Finally, we thoroughly analyze the benefits of the hierarchical model compared to the results from stochastic and deterministic models.
The widespread diffusion of distributed energy resources, especially those based on renewable energy, and energy storage devices has deeply modified power systems. As a consequence, demand response, the ability of customers to respond to regulating s ignals, has moved from large high-voltage and medium-voltage end-users to small, low-voltage, customers. In order to be effective, the participation to demand response of such small players must be gathered by aggregators. The role and the business models of these new entities have been studied in literature from a variety of viewpoints. Demand response can be clearly applied by sending a dedicated price signal to customers, but this methodology cannot obtain a diverse, punctual, predictable, and reliable response. These characteristics can be achieved by directly controlling the loads units. This approach involves communication problems and technological readiness. This paper proposes a fully decentralized mixed integer linear programming approach for demand response. In this framework, each load unit performs an optimization, subject to technical and user-based constraints, and gives to the aggregator a desired profile along with a reserve, which is guaranteed to comply with the constraints. In this way, the aggregator can trade the reserve coming from several load units, being the only interface to the market. Upon request, then, the aggregator communicates to the load units the modifications to their desired profiles without either knowing or caring how this modification would be accomplished. The effectiveness is simulated on 200 realistic load units.
We consider the scenario where $N$ utilities strategically bid for electricity in the day-ahead market and balance the mismatch between the committed supply and actual demand in the real-time market, with uncertainty in demand and local renewable gen eration in consideration. We model the interactions among utilities as a non-cooperative game, in which each utility aims at minimizing its per-unit electricity cost. We investigate utilities optimal bidding strategies and show that all utilities bidding according to (net load) prediction is a unique pure strategy Nash Equilibrium with two salient properties. First, it incurs no loss of efficiency; hence, competition among utilities does not increase the social cost. Second, it is robust and (0, $N-1$) fault immune. That is, fault behaviors of irrational utilities only help to reduce other rational utilities costs. The expected market supply-demand mismatch is minimized simultaneously, which improves the planning and supply-and-demand matching efficiency of the electricity supply chain. We prove the results hold under the settings of correlated prediction errors and a general class of real-time spot pricing models, which capture the relationship between the spot price, the day-ahead clearing price, and the market-level mismatch. Simulations based on real-world traces corroborate our theoretical findings. Our study adds new insights to market mechanism design. In particular, we derive a set of fairly general sufficient conditions for the market operator to design real-time pricing schemes so that the interactions among utilities admit the desired equilibrium.
With the advances in the Internet of Things technology, electric vehicles (EVs) have become easier to schedule in daily life, which is reshaping the electric load curve. It is important to design efficient charging algorithms to mitigate the negative impact of EV charging on the power grid. This paper investigates an EV charging scheduling problem to reduce the charging cost while shaving the peak charging load, under unknown future information about EVs, such as arrival time, departure time, and charging demand. First, we formulate an EV charging problem to minimize the electricity bill of the EV fleet and study the EV charging problem in an online setting without knowing future information. We develop an actor-critic learning-based smart charging algorithm (SCA) to schedule the EV charging against the uncertainties in EV charging behaviors. The SCA learns an optimal EV charging strategy with continuous charging actions instead of discrete approximation of charging. We further develop a more computationally efficient customized actor-critic learning charging algorithm (CALC) by reducing the state dimension and thus improving the computational efficiency. Finally, simulation results show that our proposed SCA can reduce EVs expected cost by 24.03%, 21.49%, 13.80%, compared with the Eagerly Charging Algorithm, Online Charging Algorithm, RL-based Adaptive Energy Management Algorithm, respectively. CALC is more computationally efficient, and its performance is close to that of SCA with only a gap of 5.56% in the cost.
This paper presents a scheme for dual robust control of batch processes under parametric uncertainty. The dual-control paradigm arises in the context of adaptive control. A trade-off should be decided between the control actions that (robustly) optim ize the plant performance and between those that excite the plant such that unknown plant model parameters can be learned precisely enough to increase the robust performance of the plant. Some recently proposed approaches can be used to tackle this problem, however, this will be done at the price of conservativeness or significant computational burden. In order to increase computational efficiency, we propose a scheme that uses parameterized conditions of optimality in the adaptive predictive-control fashion. The dual features of the controller are incorporated through scenario-based (multi-stage) approach, which allows for modeling of the adaptive robust decision problem and for projecting this decision into predictions of the controller. The proposed approach is illustrated on a case study from batch membrane filtration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا