ﻻ يوجد ملخص باللغة العربية
Magnetic fields in cool stars can be investigated by measuring Zeeman line broadening and polarization in atomic and molecular lines. Similar to the Sun, these fields are complex and height-dependent. Many molecular lines dominating M-dwarf spectra (e.g., FeH, CaH, MgH, and TiO) are temperature -- and Zeeman -- sensitive and form at different atmospheric heights, which makes them excellent probes of magnetic fields on M dwarfs. Our goal is to analyze the complexity of magnetic fields in M dwarfs. We investigate how magnetic fields vary with the stellar temperature and how surface inhomogeneities are distributed in height -- the dimension that is usually neglected in stellar magnetic studies. We have determined effective temperatures of the photosphere and of magnetic features, magnetic field strengths and filling factors for nine M dwarfs (M1-M7). Our chi^2 analysis is based on a comparison of observed and synthetic intensity and circular polarization profiles. Stokes profiles were calculated by solving polarized radiative transfer equations. Properties of magnetic structures depend on the analyzed atomic or molecular species and their formation heights. Two types of magnetic features similar to those on the Sun have been found: a cooler (starspots) and a hotter (network) one. The magnetic field strength in both starspots and network is within 3 kG to 6 kG, on average it is 5 kG. These fields occupy a large fraction of M dwarf atmospheres at all heights, up to 100%. The plasma beta is less than one, implying highly magnetized stars. A combination of molecular and atomic species and a simultaneous analysis of intensity and circular polarization spectra have allowed us to better decipher the complexity of magnetic fields on M dwarfs, including their dependence on the atmospheric height. This work provides an opportunity to investigate a larger sample of M dwarfs and L-type brown dwarfs.
Magnetic fields play a fundamental role for interior and atmospheric properties of M dwarfs and greatly influence terrestrial planets orbiting in the habitable zones of these low-mass stars. Determination of the strength and topology of magnetic fiel
A dynamo mechanism driven by differential rotation when stars merge has been proposed to explain the presence of strong fields in certain classes of magnetic stars. In the case of the high field magnetic white dwarfs (HFMWDs), the site of the differe
The origin of magnetic fields in isolated and binary white dwarfs has been investigated in a series of recent papers. One proposal is that magnetic fields are generated through an alpha-omega dynamo during common envelope evolution. Here we present p
The magnetic white dwarfs (MWDs) are found either isolated or in interacting binaries. They divide into two groups: a high field group (0.1-1,000MegaGauss) comprising some 13% of all white dwarfs (WDs), and a low field group (B<0.1MG) whose incidence
Our ongoing spectroscopic survey of high proper motion stars is a rich source of new magnetic white dwarfs. We present a few examples among cool white dwarfs showing the effect of field strength and geometry on the observed optical spectrum. Modellin