ﻻ يوجد ملخص باللغة العربية
Detecting and analyzing potential anomalous performances in cloud computing systems is essential for avoiding losses to customers and ensuring the efficient operation of the systems. To this end, a variety of automated techniques have been developed to identify anomalies in cloud computing performance. These techniques are usually adopted to track the performance metrics of the system (e.g., CPU, memory, and disk I/O), represented by a multivariate time series. However, given the complex characteristics of cloud computing data, the effectiveness of these automated methods is affected. Thus, substantial human judgment on the automated analysis results is required for anomaly interpretation. In this paper, we present a unified visual analytics system named CloudDet to interactively detect, inspect, and diagnose anomalies in cloud computing systems. A novel unsupervised anomaly detection algorithm is developed to identify anomalies based on the specific temporal patterns of the given metrics data (e.g., the periodic pattern), the results of which are visualized in our system to indicate the occurrences of anomalies. Rich visualization and interaction designs are used to help understand the anomalies in the spatial and temporal context. We demonstrate the effectiveness of CloudDet through a quantitative evaluation, two case studies with real-world data, and interviews with domain experts.
Communication consists of both meta-information as well as content. Currently, the automated analysis of such data often focuses either on the network aspects via social network analysis or on the content, utilizing methods from text-mining. However,
Financial regulatory agencies are struggling to manage the systemic risks attributed to negative economic shocks. Preventive interventions are prominent to eliminate the risks and help to build a more resilient financial system. Although tremendous e
The growing use of automated decision-making in critical applications, such as crime prediction and college admission, has raised questions about fairness in machine learning. How can we decide whether different treatments are reasonable or discrimin
One major cause of performance degradation in predictive models is that the test samples are not well covered by the training data. Such not well-represented samples are called OoD samples. In this paper, we propose OoDAnalyzer, a visual analysis app
Learning to play an instrument is intrinsically multimodal, and we have seen a trend of applying visual and haptic feedback in music games and computer-aided music tutoring systems. However, most current systems are still designed to master individua