ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting nanowires as high-rate photon detectors in strong magnetic fields

71   0   0.0 ( 0 )
 نشر من قبل Tomas Polakovic
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting nanowire single photon detectors are capable of single-photon detection across a large spectral range, with near unity detection efficiency, picosecond timing jitter, and sub-10 $mu$m position resolution at rates as high as 10$^{9}$ counts/s. In an effort to bring this technology into nuclear physics experiments, we fabricate Niobium Nitride nanowire detectors using ion beam assisted sputtering and test their performance in strong magnetic fields. We demonstrate that these devices are capable of detection of 400 nm wavelength photons with saturated internal quantum efficiency at temperatures of 3 K and in magnetic fields potentially up to 5 T at high rates and with nearly zero dark counts.



قيم البحث

اقرأ أيضاً

We demonstrate strong negative electrothermal feedback accelerating and linearizing the response of a thermal kinetic inductance detector (TKID). TKIDs are a proposed highly multiplexable replacement to transition-edge sensors and measure power throu gh the temperature-dependent resonant frequency of a superconducting microresonator bolometer. At high readout probe power and probe frequency detuned from the TKID resonant frequency, we observe electrothermal feedback loop gain up to $mathcal L$ $approx$ 16 through measuring the reduction of settling time. We also show that the detector response has no detectable non-linearity over a 38% range of incident power and that the noise-equivalent power is below the design photon noise.
We demonstrate photon noise limited performance in both phase and amplitude readout in microwave kinetic inductance detectors (MKIDs) consisting of NbTiN and Al, down to 100 fW of optical power. We simulate the far field beam pattern of the lens-ante nna system used to couple radiation into the MKID and derive an aperture efficiency of 75%. This is close to the theoretical maximum of 80% for a single-moded detector. The beam patterns are verified by a detailed analysis of the optical coupling within our measurement setup.
The composition of dark matter is one of the puzzling topics in astrophysics. To address this issue, several experiments searching for the existence of axions have been designed, built and realized in the last twenty years. Among all the others, ligh t shining through walls experiments promise to push the exclusion limits to lower energies. For this reason, effort is put for the development of single-photon detectors operating at frequencies $<100$ GHz. Here, we review recent advancements in superconducting single-photon detection. In particular, we present two sensors based on one-dimensional Josephson junctions with the capability to be in situ tuned by simple current bias: the nanoscale transition edge sensor (nano-TES) and the Josephson escape sensor (JES). These two sensors are the ideal candidates for the realization of microwave light shining through walls (LSW) experiments, since they show unprecedented frequency resolutions of about 100 GHz and 2 GHz for the nano-TES and JES, respectively.
We have measured a response to a black body radiation and noise of the cold-electron bolometers. The experimental results have been fitted by theoretical model with two heat-balance equations. The measured noise has been decomposed into several terms with the help of theory. It is demonstrated that the photon noise exceeds any other noise components, that allows us to conclude that the bolometers see the photon noise. Moreover, a peculiar shape of the noise dependence on the absorbed power originates completely from the photonic component according to the theory. In the additional experiment on heating of the cryostat plate together with the sample holder we have observed nearly independence of the noise on the electron temperature of the absorber, which has provided another proof of the presence of the photon noise in the first experiment.
We studied the effect of the external magnetic field and photon flux on timing jitter in photon detection by straight superconducting NbN nanowires. At two wavelengths 800 and 1560 nm, statistical distribution in the appearance time of the photon cou nt exhibits Gaussian shape at small times and exponential tail at large times. The characteristic exponential time is larger for photons with smaller energy and increases with external magnetic field while variations in the Gaussian part of the distribution are less pronounced. Increasing photon flux drives the nanowire from quantum detection mode to the bolometric mode that averages out fluctuations of the total number of nonequilibrium electrons created by the photon and drastically reduces jitter. The difference between Gaussian parts of distributions for these two modes provides the measure for the electron-number fluctuations. Corresponding standard deviation increases with the photon energy. We show that the two-dimensional hot-spot detection model explains qualitatively the effect of magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا