ترغب بنشر مسار تعليمي؟ اضغط هنا

LIght scalars with lepton number to solve the $(g-2)_e$ anomaly

96   0   0.0 ( 0 )
 نشر من قبل Susan Gardner
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Scalars that carry lepton number can help mediate would-be lepton-number-violating processes, such as neutrinoless double $beta$ decay or lepton-scattering-mediated nucleon-antinucleon conversion. Here we show that such new scalars can also solve the anomaly in precision determinations of the fine-structure constant $alpha$ from atom interferometry and from the electrons anomalous magnetic moment, $a_e equiv (g-2)_e/2$, by reducing $|a_e|$. Study of the phenomenological constraints on these solutions favor a doubly-charged scalar with mass below the GeV scale. Significant constraints arise from the measurement of the parity-violating asymmetry in M{o}ller scattering, and we consider the implications of the next-generation MOLLER experiment at Jefferson Laboratory and of an improved $a_e$ measurement.



قيم البحث

اقرأ أيضاً

The present work introduces two possible extensions of the Standard Model Higgs sector. In the first case, the Zee-Babu type model for the generation of neutrino mass is augmented with a scalar triplet and additional singly charged scalar singlets. T he second scenario, on the other hand, generalizes the Type-II seesaw model by replicating the number of the scalar triplets. A $mathbb{Z}_3$ symmetry is imposed in case of both the scenarios, but, allowed to be violated by terms of mass dimension two and three for generating neutrino masses and mixings. We examine how the models so introduced can explain the experimental observation on the muon anomalous magnetic moment. We estimate the two-loop contribution to neutrino mass induced by the scalar triplet, in addition to what comes from the doubly charged singlet in the usual Zee-Babu framework, in the first model. On the other hand, the neutrino mass arises in the usual Type-II fashion in the second model. In addition, the role of the $mathbb{Z}_3$ symmetry in suppressing lepton flavor violation is also elucidated.
The KOTO experiment recently presented a significant excess of events in their search for the rare SM process $K_L to pi^0 ubar{ u}$, well above both Standard Model signal and background predictions. We show that this excess may be due to weakly-coup led scalars that are produced from Kaon decays and escape KOTO undetected. We study two concrete realizations, the minimal Higgs portal and a hadrophilic scalar model, and demonstrate that they can explain the observed events while satisfying bounds from other flavor and beam-dump experiments. Hadronic beam-dump experiments provide particularly interesting constraints on these types of models, and we discuss in detail the normally underestimated uncertainties associated with them. The simplicity of the models which can explain the excess, and their possible relations with interesting UV constructions, provides strong theoretical motivation for a new physics interpretation of the KOTO data.
Experimentally, baryon number minus lepton number, $B-L$, appears to be a good global symmetry of nature. We explore the consequences of the existence of gauge-singlet scalar fields charged under $B-L$ -- dubbed lepton-number-charged scalars, LeNCS - - and postulate that these couple to the standard model degrees of freedom in such a way that $B-L$ is conserved even at the non-renormalizable level. In this framework, neutrinos are Dirac fermions. Including only the lowest mass-dimension effective operators, some of the LeNCS couple predominantly to neutrinos and may be produced in terrestrial neutrino experiments. We examine several existing constraints from particle physics, astrophysics, and cosmology to the existence of a LeNCS carrying $B-L$ charge equal to two, and discuss the emission of LeNCSs via neutrino beamstrahlung, which occurs every once in a while when neutrinos scatter off of ordinary matter. We identify regions of the parameter space where existing and future neutrino experiments, including the Deep Underground Neutrino Experiment, are at the frontier of searches for such new phenomena.
We develop the consequences of introducing a purely leptonic, lepton number violating non-standard interaction (NSI) and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short-baseline, neutrino experiments. We focus on the muon decay at rest (DAR) result from the Liquid Scintillation Neutrino Experiment (LSND) and the Karlsruhe and Rutherford Medium Energy Neutrino Experiment (KARMEN). We make a comprehensive analysis of lepton number violating, NSI effective operators and find nine that affect muon decay relevant to LSND results. Two of these preserve the standard model (SM) value 3/4 for the Michel rho and delta parameters and, overall, show favorable agreement with precision data and the electron anti-neutrino signal from LSND data. We display theoretical models that lead to these two effective operators. In the model we choose to apply to DAR data, both electron anti-neutrino appearance from muon anti-neutrino oscillation and electron anti-neutrino survival after production from NSI decay of the positive muon contribute to the expected signal. This is a unique feature of our scheme. We find a range of parameters where both experiments can be accommodated consistently with recent global, sterile neutrino fits to short baseline data. We comment on implications of the models for new physics searches at colliders and comment on further implications of the lepton number violating interactions plus sterile neutrino-standard model neutrino mixing.
The new measurement of the anomalous magnetic momentum of muon at the Fermilab Muon $g-2$ experiment has strengthened the significance of the discrepancy between the standard model prediction and the experimental observation from the BNL measurement. If new physics responsible for the muon $g-2$ anomaly is supersymmetric, one should consider how to obtain light electroweakinos and sleptons in a systematic way. The gauge coupling unification allows a robust prediction of the gaugino masses, indicating that the electroweakinos can be much lighter than the gluino if anomaly-mediated supersymmetry breaking is sizable. As naturally leading to mixed modulus-anomaly mediation, the KKLT scenario is of particular interest and is found capable of explaining the muon $g-2$ anomaly in the parameter region where the lightest ordinary supersymmetric particle is a bino-like neutralino or slepton.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا