ﻻ يوجد ملخص باللغة العربية
For any smooth Riemannian metric on an $(n+1)$-dimensional compact manifold with boundary $(M,partial M)$ where $3leq (n+1)leq 7$, we establish general upper bounds for the Morse index of free boundary minimal hypersurfaces produced by min-max theory in the Almgren-Pitts setting. We apply our Morse index estimates to prove that for almost every (in the $C^infty$ Baire sense) Riemannan metric, the union of all compact, properly embedded free boundary minimal hypersurfaces is dense in $M$. If $partial M$ is further assumed to have a strictly mean convex point, we show the existence of infinitely many compact, properly embedded free boundary minimal hypersurfaces whose boundaries are non-empty. Our results prove a conjecture of Yau for generic metrics in the free boundary setting.
We adapt the viscosity method introduced by Rivi`ere to the free boundary case. Namely, given a compact oriented surface $Sigma$, possibly with boundary, a closed ambient Riemannian manifold $(mathcal{M}^m,g)$ and a closed embedded submanifold $mathc
In the early 1980s, S. T. Yau conjectured that any compact Riemannian three-manifold admits an infinite number of closed immersed minimal surfaces. We use min-max theory for the area functional to prove this conjecture in the positive Ricci curvature
We find many examples of compact Riemannian manifolds $(M,g)$ whose closed minimal hypersurfaces satisfy a lower bound on their index that is linear in their first Betti number. Moreover, we show that these bounds remain valid when the metric $g$ is
In this paper we establish a connection between free boundary minimal surfaces in a ball in $mathbb{R}^3$ and free boundary cones arising in a one-phase problem. We prove that a doubly connected minimal surface with free boundary in a ball is a catenoid.
Given any admissible $k$-dimensional family of immersions of a given closed oriented surface into an arbitrary closed Riemannian manifold, we prove that the corresponding min-max width for the area is achieved by a smooth (possibly branched) immersed