ﻻ يوجد ملخص باللغة العربية
This work introduces a generalization of the form of the spin-orbit interaction, the generalized spin-orbit interaction (GSOI). It expresses the magnetic field induced by two charged particles moving with a non-zero relative velocity as a field defined at all points in space, and exists in the reference frames of both particles. This is in contrast to spin-orbit interaction theory, in which the generated magnetic field is defined at only one point in space, and exists in the reference frame of one of the two particles. At the macroscopic scale, it is shown that the GSOI theory implies the same form of the O{}rsted magnetic field produced by a current-carrying wire. However, the theory is incompatible with the microscopic form of the Biot-Savart equation that implies that a charged particle induces a magnetic field by having a non-zero velocity. The implications of the GSOI theory on properties of the O{}rsted magnetic field in current-carrying atomically thin two-dimensional materials, such as graphene, are discussed. The framework established in this paper aims at re-imagining classical physical concepts in light of an advanced microscopic understanding.
A wire that conducts an electric current will give rise to circular magnetic field (the {O}rsted magnetic field) that is easily calculated using the Maxwell-Ampere equation. For wires with diameters in the macroscopic scale, this is an established ph
We present an {it ab initio}-based theoretical framework which elucidates the origin of the spin-orbit torque (SOT) in Normal-Metal(NM)/Ferromagnet(FM) heterostructures. The SOT is decomposed into two contributions, namely, {it spin-Hall} and the {it
The coupling of the spin and the motion of charge carriers stems directly from the atomic structure of a conductor. It has become an important ingredient for the emergence of topological matter, and, in particular, topological superconductivity which
Effects associated with the interference of electron waves around a magnetic point defect in two-dimensional electron gas with combined Rashba-Dresselhaus spin-orbit interaction in the presence of a parallel magnetic field are theoretically investiga
We employ inelastic light scattering with magnetic fields to study intersubband spin plasmons in a quantum well. We demonstrate the existence of a giant collective spin-orbit (SO) field that splits the spin-plasmon spectrum into a triplet. The effect