ﻻ يوجد ملخص باللغة العربية
We consider parameter estimation of ordinary differential equation (ODE) models from noisy observations. For this problem, one conventional approach is to fit numerical solutions (e.g., Euler, Runge--Kutta) of ODEs to data. However, such a method does not account for the discretization error in numerical solutions and has limited estimation accuracy. In this study, we develop an estimation method that quantifies the discretization error based on data. The key idea is to model the discretization error as random variables and estimate their variance simultaneously with the ODE parameter. The proposed method has the form of iteratively reweighted least squares, where the discretization error variance is updated with the isotonic regression algorithm and the ODE parameter is updated by solving a weighted least squares problem using the adjoint system. Experimental results demonstrate that the proposed method attains robust estimation with at least comparable accuracy to the conventional method by successfully quantifying the reliability of the numerical solutions.
We propose a time-implicit, finite-element based space-time discretization of the necessary and sufficient optimality conditions for the stochastic linear-quadratic optimal control problem with the stochastic heat equation driven by linear noise of t
We present a parameter estimation method for nonlinear mixed effect models based on ordinary differential equations (NLME-ODEs). The method presented here aims at regularizing the estimation problem in presence of model misspecifications, practical i
We propose a forecasting method for predicting epidemiological health series on a two-week horizon at the regional and interregional resolution. The approach is based on model order reduction of parametric compartmental models, and is designed to acc
Classical a posteriori error analysis for differential equations quantifies the error in a Quantity of Interest (QoI) which is represented as a bounded linear functional of the solution. In this work we consider a posteriori error estimates of a quan
This paper introduces a general framework for survival analysis based on ordinary differential equations (ODE). Specifically, this framework unifies many existing survival models, including proportional hazards models, linear transformation models, a