ترغب بنشر مسار تعليمي؟ اضغط هنا

Sr atom interferometry with the optical clock transition as a gravimeter and a gravity gradiometer

125   0   0.0 ( 0 )
 نشر من قبل Nicola Poli Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize the performance of a gravimeter and a gravity gradiometer based on the $^{1}$S$_{0}$-$^3$P$_0$ clock transition of strontium atoms. We use this new quantum sensor to measure the gravitational acceleration with a relative sensitivity of $1.7times10^{-5}$, representing the first realisation of an atomic interferometry gravimeter based on a single-photon transition. Various noise contributions to the gravimeter are measured and characterized, with the current primary limitation to sensitivity seen to be the intrinsic noise of the interferometry laser itself. In a gravity gradiometer configuration, a differential phase sensitivity of 1.53~rad/$sqrt{Hz}$ was achieved at an artificially introduced differential phase of $pi/2$~rad. We experimentally investigated the effects of the contrast and visibility based on various parameters and achieve a total interferometry time of 30~ms, which is longer than previously reported for such interferometers. The characterization and determined limitations of the present apparatus employing $^{88}$Sr atoms provides a guidance for the future development of large-scale clock-transition gravimeters and gravity gradiometers with alkali-earth and alkali-earth-like atoms (e.g., $^{87}$Sr, Ca, Yb).

قيم البحث

اقرأ أيضاً

We report on the realization of a matter-wave interferometer based on single-photon interaction on the ultra-narrow optical clock transition of strontium atoms. We experimentally demonstrated its operation as a gravimeter and as a gravity gradiometer . No reduction of interferometric contrast was observed up to an interferometer time $2T=10$ ms, limited by geometric constraints of the apparatus. In the gradiometric configuration, the sensitivity approaches the shot noise limit. Single-photon interferometers represent a new class of high-precision sensors that could be used for the detection of gravitational waves in so far unexplored frequency ranges and to enlighten the boundary between Quantum Mechanics and General Relativity.
We developed a gravity-gradiometer based on atom interferometry for the determination of the Newtonian gravitational constant textit{G}. The apparatus, combining a Rb fountain, Raman interferometry and a juggling scheme for fast launch of two atomic clouds, was specifically designed to reduce possible systematic effects. We present instrument performances and show that the sensor is able to detect the gravitational field induced by source masses. A discussion of projected accuracy for textit{G} measurement using this new scheme shows that the results of the experiment will be significant to discriminate between previous inconsistent values.
We realize a two-stage, hexagonal pyramid magneto-optical trap (MOT) with strontium, and demonstrate loading of cold atoms into cavity-enhanced 1D and 2D optical lattice traps, all within a single compact assembly of in-vacuum optics. We show that th e device is suitable for high-performance quantum technologies, focusing especially on its intended application as a strontium optical lattice clock. We prepare $2times 10^4$ spin-polarized atoms of $^{87}$Sr in the optical lattice within 500 ms; we observe a vacuum-limited lifetime of atoms in the lattice of 27 s; and we measure a background DC electric field of 12 Vm$^{-1}$ from stray charges, corresponding to a fractional frequency shift of $(-1.2times 0.8)times 10^{-18}$ to the strontium clock transition. When used in combination with careful management of the blackbody radiation environment, the device shows potential as a platform for realizing a compact, robust, transportable optical lattice clock with systematic uncertainty at the $10^{-18}$ level.
We describe the Sr optical lattice clock apparatus at NPL with particular emphasis on techniques used to increase reliability and minimise the human requirement in its operation. Central to this is a clock-referenced transfer cavity scheme for the st abilisation of cooling and trapping lasers. We highlight several measures to increase the reliability of the clock with a view towards the realisation of an optical time-scale. The clock contributed 502 hours of data over a 25 day period (84% uptime) in a recent measurement campaign with several uninterrupted periods of more than 48 hours. An instability of $2times10^{-17}$ was reached after $10^5$ s of averaging in an interleaved self-comparison of the clock.
We present a gradiometer based on matter-wave interference of alkaline-earth-metal atoms, namely $^{88}$Sr. The coherent manipulation of the atomic external degrees of freedom is obtained by large-momentum-transfer Bragg diffraction, driven by laser fields detuned away from the narrow $^1$S$_0$-$^3$P$_1$ intercombination transition. We use a well-controlled artificial gradient, realized by changing the relative frequencies of the Bragg pulses during the interferometer sequence, in order to characterize the sensitivity of the gradiometer. The sensitivity reaches $1.5 times 10^{-5}$ s$^{-2}$ for an interferometer time of 20 ms, limited only by geometrical constraints. We observed extremely low sensitivity of the gradiometric phase to magnetic field gradients, approaching a value 10$^{5}$ times lower than the sensitivity of alkali-atom based gradiometers. An efficient double-launch technique employing accelerated red vertical lattices from a single magneto-optical trap cloud is also demonstrated. These results highlight strontium as an ideal candidate for precision measurements of gravity gradients, with potential application in future precision tests of fundamental physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا