ﻻ يوجد ملخص باللغة العربية
This paper discusses some general aspects and techniques associated with the long-time asymptotics of steplike solutions of the Korteweg-de Vries (KdV) equation via vector Riemann--Hilbert problems. We also elaborate on an ill-posedness of the matrix Riemann-Hilbert problems for the KdV case. To the best of our knowledge this is the first time such ill-posedness is discussed in applications of Riemann--Hilbert theory. Furthermore, we rigorously justify the asymptotics for the shock wave in the elliptic zone derived previously.
We study the asymptotic behavior of Riemann-Hilbert problems (RHP) arising in the AKNS hierarchy of integrable equations. Our analysis is based on the $dbar$-steepest descent method. We consider RHPs arising from the inverse scattering transform of t
The present paper is dedicated to integrable models with Mikhailov reduction groups $G_R simeq mathbb{D}_h.$ Their Lax representation allows us to prove, that their solution is equivalent to solving Riemann-Hilbert problems, whose contours depend on
We show that the KdV flow evolves any real singular initial profile q of the form q=r+r^2, where rinL_{loc}^2, r|_{R_+}=0 into a meromorphic function with no real poles.
We take a closer look at the Riemann-Hilbert problem associated to one-gap solutions of the Korteweg-de Vries equation. To gain more insight, we reformulate it as a scalar Riemann-Hilbert problem on the torus. This enables us to derive deductively th
We are concerned with the Cauchy problem for the KdV equation for nonsmooth locally integrable initial profiles qs which are, in a certain sense, essentially bounded from below and q(x)=O(e^{-cx^{{epsilon}}}),xrightarrow+infty, with some positive c a