ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Compression-based Lifelong Learning

145   0   0.0 ( 0 )
 نشر من قبل Shivangi Srivastava
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of a deep learning model losing performance on a previously learned task when fine-tuned to a new one is a phenomenon known as Catastrophic forgetting. There are two major ways to mitigate this problem: either preserving activations of the initial network during training with a new task; or restricting the new network activations to remain close to the initial ones. The latter approach falls under the denomination of lifelong learning, where the model is updated in a way that it performs well on both old and new tasks, without having access to the old tasks training samples anymore. Recently, approaches like pruning networks for freeing network capacity during sequential learning of tasks have been gaining in popularity. Such approaches allow learning small networks while making redundant parameters available for the next tasks. The common problem encountered with these approaches is that the pruning percentage is hard-coded, irrespective of the number of samples, of the complexity of the learning task and of the number of classes in the dataset. We propose a method based on Bayesian optimization to perform adaptive compression/pruning of the network and show its effectiveness in lifelong learning. Our method learns to perform heavy pruning for small and/or simple datasets while using milder compression rates for large and/or complex data. Experiments on classification and semantic segmentation demonstrate the applicability of learning network compression, where we are able to effectively preserve performances along sequences of tasks of varying complexity.



قيم البحث

اقرأ أيضاً

Multilinear Compressive Learning (MCL) is an efficient signal acquisition and learning paradigm for multidimensional signals. The level of signal compression affects the detection or classification performance of a MCL model, with higher compression rates often associated with lower inference accuracy. However, higher compression rates are more amenable to a wider range of applications, especially those that require low operating bandwidth and minimal energy consumption such as Internet-of-Things (IoT) applications. Many communication protocols provide support for adaptive data transmission to maximize the throughput and minimize energy consumption. By developing compressive sensing and learning models that can operate with an adaptive compression rate, we can maximize the informational content throughput of the whole application. In this paper, we propose a novel optimization scheme that enables such a feature for MCL models. Our proposal enables practical implementation of adaptive compressive signal acquisition and inference systems. Experimental results demonstrated that the proposed approach can significantly reduce the amount of computations required during the training phase of remote learning systems but also improve the informational content throughput via adaptive-rate sensing.
Lifelong learning, the problem of continual learning where tasks arrive in sequence, has been lately attracting more attention in the computer vision community. The aim of lifelong learning is to develop a system that can learn new tasks while mainta ining the performance on the previously learned tasks. However, there are two obstacles for lifelong learning of deep neural networks: catastrophic forgetting and capacity limitation. To solve the above issues, inspired by the recent breakthroughs in automatically learning good neural network architectures, we develop a Multi-task based lifelong learning via nonexpansive AutoML framework termed Regularize, Expand and Compress (REC). REC is composed of three stages: 1) continually learns the sequential tasks without the learned tasks data via a newly proposed multi-task weight consolidation (MWC) algorithm; 2) expands the network to help the lifelong learning with potentially improved model capability and performance by network-transformation based AutoML; 3) compresses the expanded model after learning every new task to maintain model efficiency and performance. The proposed MWC and REC algorithms achieve superior performance over other lifelong learning algorithms on four different datasets.
Learning-based image compression was shown to achieve a competitive performance with state-of-the-art transform-based codecs. This motivated the development of new learning-based visual compression standards such as JPEG-AI. Of particular interest to these emerging standards is the development of learning-based image compression systems targeting both humans and machines. This paper is concerned with learning-based compression schemes whose compressed-domain representations can be utilized to perform visual processing and computer vision tasks directly in the compressed domain. Such a characteristic has been incorporated as part of the scope and requirements of the new emerging JPEG-AI standard. In our work, we adopt the learning-based JPEG-AI framework for performing material and texture recognition using the compressed-domain latent representation at varing bit-rates. For comparison, performance results are presented using compressed but fully decoded images in the pixel domain as well as original uncompressed images. The obtained performance results show that even though decoded images can degrade the classification performance of the model trained with original images, retraining the model with decoded images will largely reduce the performance gap for the adopted texture dataset. It is also shown that the compressed-domain classification can yield a competitive performance in terms of Top-1 and Top-5 accuracy while using a smaller reduced-complexity classification model.
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system. Specifically, the original image is first decomposed into the lossy reconstruction obtained after compressing it with BPG and the correspondi ng residual. We then model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction, and combine it with entropy coding to losslessly encode the residual. Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder. The resulting compression system achieves state-of-the-art performance in learned lossless full-resolution image compression, outperforming previous learned approaches as well as PNG, WebP, and JPEG2000.
The field of neural image compression has witnessed exciting progress as recently proposed architectures already surpass the established transform coding based approaches. While, so far, research has mainly focused on architecture and model improveme nts, in this work we explore content adaptive optimization. To this end, we introduce an iterative procedure which adapts the latent representation to the specific content we wish to compress while keeping the parameters of the network and the predictive model fixed. Our experiments show that this allows for an overall increase in rate-distortion performance, independently of the specific architecture used. Furthermore, we also evaluate this strategy in the context of adapting a pretrained network to other content that is different in visual appearance or resolution. Here, our experiments show that our adaptation strategy can largely close the gap as compared to models specifically trained for the given content while having the benefit that no additional data in the form of model parameter updates has to be transmitted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا