ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffuse ionized gas and its effects on nebular metallicity estimates of star-forming galaxies

160   0   0.0 ( 0 )
 نشر من قبل Natalia Vale Asari
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the impact of the diffuse ionized gas (DIG) on abundance determinations in star-forming (SF) galaxies. The DIG is characterised using the H$alpha$ equivalent width ($W_{text{H}alpha}$). From a set of 1,409 SF galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey, we calculate the fractional contribution of the DIG to several emission lines using high-$S/N$ data from SF spaxels (instead of using noisy emission-lines in DIG-dominated spaxels). Our method is applicable to spectra with observed $W_{text{H}alpha} gtrsim 10$ angstroms (which are not dominated by DIG emission). Since the DIG contribution depends on galactocentric distance, we provide DIG-correction formulae for both entire galaxies and single aperture spectra. Applying those to a sample of $,> 90,000$ SF galaxies from the Sloan Digital Sky Survey, we find the following. (1) The effect of the DIG on strong-line abundances depends on the index used. It is negligible for the ([O III]/H$beta$)/([N II]/H$alpha$) index, but reaches $sim 0.1$ dex at the high-metallicity end for [N II]/H$alpha$. (2) This result is based on the $sim$kpc MaNGA resolution, so the real effect of the DIG is likely greater. (3) We revisit the mass-metallicity-star formation rate (SFR) relation by correcting for the DIG contribution in both abundances and SFR. The effect of DIG removal is more prominent at higher stellar masses. Using the [N II]/H$alpha$ index, O/H increases with SFR at high stellar mass, contrary to previous claims.



قيم البحث

اقرأ أيضاً

The Diffuse Ionized Gas (DIG) contributes to the nebular emission of galaxies, resulting in emission line flux ratios that can be significantly different from those produced by HII regions. Comparing the emission of [SII]6717,31 between pointed obser vations of HII regions in nearby galaxies and integrated spectra of more distant galaxies, it has been recently claimed that the DIG can also deeply affect the emission of bright, star-forming galaxies, and that a large correction must be applied to observed line ratios to recover the genuine contribution from HII regions. Here we show instead that the effect of DIG on the integrated spectra of star-forming galaxies is lower than assumed in previous work. Indeed, aperture effects on the spectroscopy of nearby HII regions are largely responsible for the observed difference: when spectra of local HII regions are extracted using large enough apertures while still avoiding the DIG, the observed line ratios are the same as in more distant galaxies. This result is highly relevant for the use of strong-line methods to measure metallicity.
It has been hypothesized that photons from young, massive star clusters are responsible for maintaining the ionization of diffuse warm ionized gas seen in both the Milky Way and other disk galaxies. For a theoretical investigation of the warm ionized medium (WIM), it is crucial to solve radiation transfer equations where the ISM and clusters are modeled self-consistently. To this end, we employ a Solar neighborhood model of TIGRESS, a magnetohydrodynamic simulation of the multiphase, star-forming ISM, and post-process the simulation with an adaptive ray tracing method to transfer UV radiation from star clusters. We find that the WIM volume filling factor is highly variable, and sensitive to the rate of ionizing photon production and ISM structure. The mean WIM volume filling factor rises to ~0.15 at |z|~1 kpc. Approximately half of ionizing photons are absorbed by gas and half by dust; the cumulative ionizing photon escape fraction is 1.1%. Our time-averaged synthetic H$alpha$ line profile matches WHAM observations on the redshifted (outflowing) side, but has insufficient intensity on the blueshifted side. Our simulation matches the Dickey-Lockman neutral density profile well, but only a small fraction of snapshots have high-altitude WIM density consistent with Reynolds Layer estimates. We compute a clumping correction factor C = <n_e>/sqrt<n_e^2>~0.2 that is remarkably constant with distance from the midplane and time; this can be used to improve estimates of ionized gas mass and mean electron density from observed H$alpha$ surface brightness profiles in edge-on galaxies.
We present a systematic study of the diffuse ionized gas (DIG) in M83 and its effects on the measurement of metallicity gradients at varying resolution scales. Using spectrophotometric data cubes of M83 obtained at the 2.5m duPont telescope at Las Ca mpanas Observatory as part of the TYPHOON program, we separate the HII regions from the DIG using the [SII]/H$alpha$ ratio, HIIphot (HII finding algorithm) and the H$alpha$ surface brightness. We find that the contribution to the overall H$alpha$ luminosity is approximately equal for the HII and DIG regions. The data is then rebinned to simulate low-resolution observations at varying resolution scales from 41 pc up to 1005 pc. Metallicity gradients are measured using five different metallicity diagnostics at each resolution. We find that all metallicity diagnostics used are affected by the inclusion of DIG to varying degrees. We discuss the reasons of why the metallicity gradients are significantly affected by DIG using the HII dominance and emission line ratio radial profiles. We find that applying the [SII]/H$alpha$ cut will provide a closer estimate of the true metallicity gradient up to a resolution of 1005 pc for all metallicity diagnostics used in this study.
96 - N. Vale Asari 2021
Estimates of gas-phase abundances based on strong-line methods have been calibrated for H~{scshape ii} regions. Those methods ignore any contribution from the diffuse ionized gas (DIG), which shows enhanced collisional-to-recombination line ratios in comparison to H~{scshape ii} regions of the same metallicity. Applying strong line methods whilst ignoring the role of the DIG thus systematically overestimates metallicities. Using integral field spectroscopy data, we show how to correct for the DIG contribution and how it biases the mass--metallicity--star formation rate relation.
We analyze the intrinsic velocity dispersion properties of 648 star-forming galaxies observed by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, to explore the relation of intrinsic gas velocity dispersions with star formation rates (SFRs), SFR surface densities ($rm{Sigma_{SFR}}$), stellar masses and stellar mass surface densities ($rm{Sigma_{*}}$). By combining with high z galaxies, we found that there is a good correlation between the velocity dispersion and the SFR as well as $rm{Sigma_{SFR}}$. But the correlation between the velocity dispersion and the stellar mass as well as $rm{Sigma_{*}}$ is moderate. By comparing our results with predictions of theoretical models, we found that the energy feedback from star formation processes alone and the gravitational instability alone can not fully explain simultaneously the observed velocity-dispersion/SFR and velocity-dispersion/$rm{Sigma_{SFR}}$ relationships.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا