ﻻ يوجد ملخص باللغة العربية
Self-organization, and transitions from reversible to irreversible behaviour, of interacting particle assemblies driven by externally imposed stresses or deformation is of interest in comprehending diverse phenomena in soft matter. They have been investigated in a wide range of systems, such as colloidal suspensions, glasses, and granular matter. In different density and driving regimes, such behaviour is related to yielding of amorphous solids, jamming, and memory formation, emph{etc.} How these phenomena are related to each other has not, however, been much studied. In order to obtain a unified view of the different regimes of behaviour, and transitions between them, we investigate computationally the response of soft sphere assemblies to athermal cyclic shear deformation over a wide range of densities and amplitudes of shear deformation. Cyclic shear deformation induces transitions from reversible to irreversible behaviour in both unjammed and jammed soft sphere packings. Well above isotropic jamming density ($bf{phi_J}$), this transition corresponds to yielding. In the vicinity of the jamming point, up to a higher density limit we designate ${bf phi_J^{cyc}}$, an unjammed phase emerges between a localised, emph{absorbing} phase, and a diffusive, {emph irreversible} phase. The emergence of the unjammed phase signals the shifting of the jamming point to higher densities as a result of annealing, and opens a window where shear jamming becomes possible for frictionless packings. Below $bf{phi_J}$, two distinct localised states, termed point and loop reversibile, are observed. We characterise in detail the different regimes and transitions between them, and obtain a unified density-shear amplitude phase diagram.
We show that non-Brownian suspensions of repulsive spheres below jamming display a slow relaxational dynamics with a characteristic time scale that diverges at jamming. This slow time scale is fully encoded in the structure of the unjammed packing an
When an amorphous solid is deformed cyclically, it may reach a steady state in which the paths of constituent particles trace out closed loops that repeat in each driving cycle. A remarkable variant has been noticed in simulations where the period of
Many experiments over the past half century have shown that, for a range of protocols, granular materials compact under pressure and repeated small disturbances. A recent experiment on cyclically sheared spherical grains showed significant compaction
We investigate avalanches associated with plastic rearrangements and the nature of structural change in the prototypical strong glass, silica, computationally. Although qualitative aspects of yielding in silica are similar to other glasses, we find t
We study the vibrational modes of three-dimensional jammed packings of soft ellipsoids of revolution as a function of particle aspect ratio $epsilon$ and packing fraction. At the jamming transition for ellipsoids, as distinct from the idealized case