ﻻ يوجد ملخص باللغة العربية
The study of the cross-correlation angular power spectrum between gravitational tracers and electromagnetic signals can be a powerful tool to constrain Dark Matter (DM) microscopic properties. In this work we correlate Fermi diffuse g-ray maps with catalogues of galaxy clusters. To emphasize the sensitivity to a DM signal, we select clusters at low-redshift $0<z<0.2$ and with large-halo mass $M_{500}>10^{13}M_odot$. The analysis is performed with four catalogues in different wavebands, including infrared, optical and X-rays. No evidence for a DM signal is identified. On the other hand, we derive competitive bounds: the thermal cross-section is excluded at 95% C.L. for DM masses below 20 GeV and annihilation in the $tau^+-tau^-$ channel.
The SIMPLE project uses superheated C2ClF5 liquid detectors to search for particle dark matter candidates. We report the results of the first stage exposure (14.1 kgd) of its latest two-stage, Phase II run, with 15 superheated droplet detectors of to
Ultra-light hidden-photon dark matter produces an oscillating electric field in the early Universe plasma, which in turn induces an electric current in its ionized component whose dissipation results in heat transfer from the dark matter to the plasm
Updated constraints on dark matter cross section and mass are presented combining CMB power spectrum measurements from Planck, WMAP9, ACT, and SPT as well as several low-redshift datasets (BAO, HST, supernovae). For the CMB datasets, we combine WMAP9
We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (fb) to investigate the clustercentr
Dwarf spheroidal galaxies that form in halo substructures provide stringent constraints on dark matter annihilation. Many ultrafaint dwarfs discovered with modern surveys contribute significantly to these constraints. At present, because of the lack